簡易檢索 / 詳目顯示

研究生: 趙浩志
Hao-Zhi Zhao
論文名稱: 氣缸式靜平衡機構之設計
Design of the Statically Balanced Mechanisms Using Pneumatic Cylinders
指導教授: 陳羽薰
Yu-Hsun Chen
郭進星
Chin-Hsing Kuo
口試委員: 陳羽薰
Yu-Hsun Chen
郭進星
Chin-Hsing Kuo
林柏廷
Po-Ting Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 62
中文關鍵詞: 靜平衡機構重力補償氣動式手動式平衡控制器
外文關鍵詞: statically balanced mechanism, gravity compensation, pneumatic, hand-operated balanced manipulator
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無論是工業用機械手臂、手術機器人還是一般的工業機械設備中,經常需要使用到靜平衡技術來獲得更佳的機械運動特性。一般常用到的靜平衡方法多半為彈簧法、配重法、磁力法、纜繩及連桿法,上述方法皆為被動式靜平衡方法。本研究則是使用主動式氣動法作為主要的重力補償來源,以其為發想基礎提出一個機械手臂設計,本設計具有以下優勢:

    (1) 此氣動式靜平衡機構只需一個步驟便能達到可變負載;
    (2) 本設計在使用過程中能在任意位置停止並擁有鎖固功能;
    (3) 本研究相較於其他靜平衡法的設計體積大小更為簡化;
    (4) 考慮各零件重量並使用實際彈簧,達到近似重力平衡;

    以此構想本研究提出以直線型氣壓缸取代傳統式彈簧的雙自由度靜平衡機構,並且使用MSC Adams 電腦輔助工程軟體驗證其可行性。
    為了使雙自由度靜平衡機構能合乎實用性本研究考慮每根桿件之桿重,提出一系統公式計算依據不同荷重及不同安裝位置及氣壓缸大小各別所需輸入的氣壓巴數,達到可變負載的特性。提出共五個步驟的基本操作,並講解氣壓缸之功用。最後,製作原型機量測實際情況與模擬結果相同,並驗證此機構能達到上述之優勢。


    Whether it's industrial robotic arms, surgical robots or general industrial machinery, static balancing technology is often used to achieve better mechanical motion characteristics. Most of the static balancing methods commonly using spring, counterweight, magnetic, cable and connecting, and the above methods are passive static balancing methods. This thesis using active pneumatic method as the main source of gravity compensation, with its idea as the basis for a mechanical arm design, this design has the following advantages:

    (1) This pneumatic static balancing mechanism can achieve variable payload in one step;
    (2) This design can be stopped in any position during working and it has the locking function;
    (3) This thesis is more simplified in size compared with other static balancing methods;
    (4) Consider the weight of each part and use the actual spring to achieve an approximate gravity balanced;

    This thesis proposes a 2-DoF statically balanced mechanism using a linear pneumatic cylinder , and to verify its feasibility with MSC Adams CAE software. In order to make the 2-DoF statically balanced mechanism in line with practicability. This thesis considers the weight of each rod piece, a system formula is proposed to calculate the number of air pressure bars required according to different payload and different mounting positions and the size of the cylinder, to achieve the characteristics of the variable payload. Propose five operation steps and explain the function of the air pressure cylinder.

    Finally, the prototype measures the actual situation is the same as the simulation results, and verify the mechanism can achieve the above advantages.

    摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1. 研究動機與目的 1 1.2. 文獻回顧 2 1.2.1. 靜平衡機構 2 1.2.2. 手動式平衡控制器 6 1.2.3. 氣動式重力補償 7 1.3. 論文架構 9 第二章 氣動式靜平衡機構介紹 11 2.1. 靜平衡法介紹及分類 11 2.2. 氣動式靜平衡介紹 14 2.3. 討論 15 2.4. 小結 16 第三章 氣動式靜平衡機構設計 17 3.1. 動機與目標 17 3.2. 設計概念 17 3.3. 氣壓缸之選用 26 3.4. 操作步驟 29 3.5. 小結 30 第四章 運動分析與模擬 31 4.1. 軟體介紹 31 4.2. CAD模型定義 31 4.3. 軟體設定 32 4.3.1. 零件參數設定(Bodies properties) 32 4.3.2. 接頭設定(Connectors) 32 4.3.3. 驅動設定(Motions) 33 4.3.4. 力量參數設定(Forces) 33 4.3.5. 模擬控制(Simulation Control) 33 4.4. 模擬驗證 35 4.5. 小結 38 第五章 原型機實作 39 5.1. CAD模型 39 5.2. 機械設計 41 5.2.1. 氣壓缸之使用 41 5.2.2. 空氣壓縮系統之配置 42 5.3. 原型機 43 5.4. 小結 45 第六章 結論與未來展望 46 6.1. 結論 46 6.2. 未來展望 47 參考文獻 48

    [1] Hsiu, W.-H., Syu, F.-C., Kuo, C.-H., 2014, “Design and Implementation of a New Statically Balanced Mechanism for Slider-Type Desktop Monitor Stands,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(9), pp. 1671-1685.
    [2] Kuo, C.-H., Lai, S.-J., 2015, “Design of a Novel Statically Balanced Mechanism for Laparoscope Holders with Decoupled Positioning and Orientating Manipulation,” Journal of Mechanisms and Robotics, 8(1), pp. 015001-015001-10.
    [3] Robertson, P. D., Kuo, C. H., Herder, J. L., 2016, “A Compatibility Study of Static Balancing in Reconfigurable Mechanisms,” (50169), p. V05BT07A050.
    [4] Tsai, H.-K., Chen, Y.-S., Kuo, C.-H., 2017, “Development of a Continuously Statically Balanced Tablet Computer Stand,” Mechanism and Machine Science, Zhang, X., Wang, N., Huang, Y., Eds., Singapore, 2017//, Springer Singapore, pp. 609-618.
    [5] Robertson, P. D., Herder, J. L., Kuo, C., 2018, “The Static Balancing of Single-Loop Reconfigurable Mechanisms,” 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR), 20-22 June 2018, pp. 1-11.
    [6] Karl Storz Se & Co. Kg. Available from: https://www.karlstorz.com/de/en/index.htm.
    [7] Ckd Co. Pfb2. Available from: https://www.ckd.co.jp/kiki/en/product/detail/299/PFB2.
    [8] Arakelian, V., 2015, “Gravity Compensation in Robotics,” Advanced Robotics, 30(2), pp. 79-96.
    [9] Joshi, R. M., Chheta, Y. R., Gotewal, K. K., M., M., 2017 of Conference, “A Review on Passive Gravity Compensation,” International Conference on Electronics, Communication and Aerospace Technology, Call Number.
    [10] Nakamoto, H., Matsuhira, N., 2017, “Development of an Arm for Collaborative Robot Equipped with Gravity Compensation Mechanism According to Payload,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, pp. 40-45.
    [11] Kuo, C. H., Nguyen-Vu, L., Chou, L. T., 2018, “Static Balancing of a Reconfigurable Linkage with Switchable Mobility by Using a Single Counterweight,” 2018 International Conference on Reconfigurable Mechanisms and Robots, ReMAR 2018 - Proceedings.
    [12] Chou, L. T., 2017, Counterweight-Based Static Balancing Design of a Reconfigurable Lower-Limb Rehabilitation Device, Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [13] Chu, Y.-L., 2015, Design of a Single-Degree-of-Freedom Statically Balanced Mechanism with Self-Regulator under Variable Payload, Design of a Novel Gravity Balancer Based on Cardan Gear Mechanism, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [14] Chu, Y.-L., Kuo, C.-H., 2017, “A Single-Degree-of-Freedom Self-Regulated Gravity Balancer for Adjustable Payload 1,” Journal of Mechanisms and Robotics, 9(2)
    [15] Martini, A., 2017, “Development of an Elastically Compensated Ups-Type Constant-Force Generator for the Static Balancing of Spatial Parallel Mechanisms,” AIMETA 2017 - Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, Vol. 4, pp. 541-549.
    [16] Lian, B., Sun, T., Song, Y., Wang, X., 2016, “Passive and Active Gravity Compensation of Horizontally-Mounted 3-R P S Parallel Kinematic Machine,” Mechanism and Machine Theory, 104, pp. 190-201.
    [17] Hung, Y. C., 2016, Design of a Novel Gravity Balancer Based on Cardan Gear Mechanism, Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [18] Hung, Y.-C., Kuo, C.-H., 2017, “A Novel One-Dof Gravity Balancer Based on Cardan Gear Mechanism,” New Trends in Mechanism and Machine Science, pp. 261-268.
    [19] Wu, Y. X., 2018, Design of an Improved Cardan-Gear-Based Gravity Balancer, Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [20] Arakelian, V., 2004, “The History of the Creation and Development of Hand-Operated Balanced Manipulators (Hobm),” International Symposium on History of Machines and Mechanisms, pp. 347-356.
    [21] Liu, Y., 2018, “Pressure Control of Pneumatic Gravity Compensation System,” Journal of Mechanical Engineering, 54(16)
    [22] Klimchik, A., Pashkevich, A., Caro, S., Furet, B., 2017, “Calibration of Industrial Robots with Pneumatic Gravity Compensators,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, pp. 285-290.
    [23] Kim, D. H., Chung, G. J., Park, K. T., 2014, “Application of Gas Spring for Robot Arm Balancing,” International Conference on Control, Automation and Systems, pp. 338-341.
    [24] Shariatee, M., Akbarzadeh, A., Nabavi, N., 2018, “Design of a Pneumatic Weight Compensation System for the Fum Stewart Robot,” 5th RSI International Conference on Robotics and Mechatronics, IcRoM 2017, pp. 624-629.
    [25] Danyao Co., Ltd.; Available from:
    http://danyao-ltd.com/.
    [26] Festo Co., Ltd.; Available from:
    https://www.festo.com/cms/zh-tw_tw/index.htm.

    無法下載圖示 全文公開日期 2024/08/21 (校內網路)
    全文公開日期 2024/08/21 (校外網路)
    全文公開日期 2024/08/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE