簡易檢索 / 詳目顯示

研究生: 蔡承晏
Cheng-Yen Tsai
論文名稱: 無耗能調整可變負載靜平衡機構設計
Design of a Statically Balanced Mechanism for Variable Payloads with Energy-Free Adjustment
指導教授: 陳羽薰
Yu-Hsun Chen
郭進星
Chin-Hsing Kuo
口試委員: 陳羽薰
Yu-Hsun Chen
郭進星
Chin-Hsing Kuo
林柏廷
Po-Ting Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 54
中文關鍵詞: 靜力平衡機構非單一位置可變負載不須外部能量
外文關鍵詞: static balancing mechanism, at any position, variable payload, energy-free
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 靜力平衡機構 (static balancing mechanism) 是一種使用能量元件 (如彈簧) 來抵銷機構上負載的重力位能的機構,意即在機構作動的空間中總能量保持定值,藉此降低驅動機構所需的能量。這樣的概念也已廣泛應用於工業機械手臂、手術器械與復健機構等領域。而在本領域中首先分兩大區塊,一種是負載固定,即機構總位能曲線不變,相關的研究已臻成熟;另一區塊則有較大發展空間,即機構具備改變負載之功能。然而改變負載,意味著重力位能曲線改變,需要添加外部的能量達成。對此本領域再分兩區塊,在Chu & Kuo[1]提出的單自由度自主調節重力平衡器論文中有對兩區塊做探討。一種需要外部能量 (non energy-free) ,使用諸如馬達、氣動式元件或是利用負載自身的重力來改變機構構形以符合新的重力位能曲線;另一種不需外部能量 (energy-free) ,利用幾何特性設計機構,使調整機構構型的過程不需要額外能量。然而在不需外部能量即可更改負載的研究中,皆要求機構在更改負載的同時必須將機構固鎖於單一的位置,而本位置與設計條件有關,然而在許多應用上,這樣的限制十分不便。
    本研究係以 Herder 等人所提出的 spring-to-spring[2]以及virtual spring[3]為基礎,設計出一組特殊幾何機構,透過在不同機構作動狀態下固鎖特定接頭,使機構能夠在作動空間中的各個位置改變負載,藉此改善只可於單一特定位置更改負載的缺點,並且保留不需外部能量 (energy-free) 的特點。之後利用分析與模擬軟體 Matlab & Adams 分析機構並進行驗證。


    A static balancing mechanism is a mechanism that uses power storage components (like spring) to eliminate the potential energy of the payload, which means while mechanism is moving, the total energy remains constant, and leads to reduction of input energy. This concept has been applied to many field like industrial robot arm, surgery, rehabilitation, etc. The field of static balancing can first be separated into two categories, one is fixed payload mass, which means the curve of potential energy remains the same, and this category has been developed maturely; another category, which payload mass can be changed, on the other hand, has certain space of development. However, the change of payload mass means the change of the curve of potential energy, and the process requires extra power to achieve. Further, this field can be again separated into two categories, in Chu & Kuo’s[1] single degree of freedom self-regulated gravity balancer, there is an in-depth exploration. One is non-energy-free, which uses power component like motors, pneumatic, the gravitational force of payload itself, etc. to change the structure of mechanism to fit the new curve of potential energy; another is energy-free, which uses geometrical property to design the mechanism that the structure of mechanism can be changed without extra power. However, for researches in the field of energy-free, the restriction is that the mechanisms must be locked at a certain position to change the payload and leads to certain inconvenience.
    This study bases on Herder’s spring-to-spring[2] method and virtual spring[3] method, proposes a special geometrical mechanism. Through locking and unlocking certain joints at different stages of mechanism movement, the mechanism can change payload at any position in the workspace. This study improves the drawback of changing payload at one certain position and remains the advantage of energy-free feature. Matlab and Adams simulation is carried out and verified.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1. 耗能式可變負載重力平衡機構 2 1.2.2. 無耗能式可變負載重力平衡機構 5 1.3 論文架構 12 第二章 無耗能可變負載機構設計 14 2.1 設計目的 14 2.2 機構設計 15 2.3 機構作動圖解說明 16 2.3.1. 重力平衡階段 16 2.3.2. VSM 調節階段 17 2.3.3. SSM調節階段 18 2.3.4. 更改負載階段 18 2.3.5. 新重力平衡階段 19 2.4 小結 20 第三章 機構參數設計 21 3.1 重力平衡階段 21 3.2 調節階段 22 3.3 新重力平衡階段 25 3.4 機構使用限制 26 3.4.1. 彈力限制式可變負載機構 26 3.4.2. 歸零操作式可變負載機構 28 3.5 小結 29 第四章 機構分析與模擬 30 4.1 首次更改負載 30 4.1.1. Matlab分析 31 4.1.2. Adams模擬 31 4.2 彈力限制式二次更改負載 33 4.2.1. Matlab分析 34 4.2.2. Adams模擬 34 4.3 歸零操作式二次更改負載 35 4.3.1. Matlab分析 36 4.3.2. Adams模擬 36 4.4 小結 37 第五章 結論與未來展望 38 5.1 結論 38 5.2 未來展望 39 參考文獻 40 Appendix: 機構更改負載流程 43

    [1] Chu, Y. L., Kuo, C. H., 2017, “A Single-Degree-of-Freedom Self-Regulated Gravity Balancer for Adjustable Payload,” Journal of Mechanisms and Robotics, 9(2), pp. 021006-1.
    [2] Barents, R., Schenk, M., Van Dorsser, W. D., Wisse, B. M., Herder, J. L., 2011, “Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators,” Journal of Mechanical Design, Transactions of the ASME, 133(6)
    [3] Wisse, B. M., Van Dorsser, W. D., Barents, R., Herder, J. L., 2007, “Energy-Free Adjustment of Gravity Equilibrators Using the Virtual Spring Concept,” 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR'07, Noordwijk, pp. 742-750.
    [4] Tseng, T.-Y., Lin, Y.-J., Hsu, W.-C., Lin, L.-F., Kuo, C.-H., 2017, “A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation with Switchable Hip/Knee-Only Exercise,” Journal of Mechanisms and Robotics, 9(4), pp. 041002-041002-9.
    [5] Tsai, H.-K., Chen, Y.-S., Kuo, C.-H., 2017, “Development of a Continuously Statically Balanced Tablet Computer Stand,” Mechanism and Machine Science, Zhang, X., Wang, N., Huang, Y., Eds., Singapore, 2017//, Springer Singapore, pp. 609-618.
    [6] Robertson, P. D., Kuo, C. H., Herder, J. L., 2016, “A Compatibility Study of Static Balancing in Reconfigurable Mechanisms,” (50169), p. V05BT07A050.
    [7] Robertson, P. D., Herder, J. L., Kuo, C., 2018, “The Static Balancing of Single-Loop Reconfigurable Mechanisms,” 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR), 20-22 June 2018, pp. 1-11.
    [8] Kuo, C.-H., Lai, S.-J., 2015, “Design of a Novel Statically Balanced Mechanism for Laparoscope Holders with Decoupled Positioning and Orientating Manipulation,” Journal of Mechanisms and Robotics, 8(1), pp. 015001-015001-10.
    [9] Kuo, C., Nguyen-Vu, L., Chou, L., 2018, “Static Balancing of a Reconfigurable Linkage with Switchable Mobility by Using a Single Counterweight,” 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR), 20-22 June 2018, pp. 1-6.
    [10] Hung, Y.-C., Kuo, C.-H., 2017, “A Novel One-Dof Gravity Balancer Based on Cardan Gear Mechanism,” New Trends in Mechanism and Machine Science, Wenger, P., Flores, P., Eds., Cham, 2017//, Springer International Publishing, pp. 261-268.
    [11] Hsiu, W.-H., Syu, F.-C., Kuo, C.-H., 2014, “Design and Implementation of a New Statically Balanced Mechanism for Slider-Type Desktop Monitor Stands,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(9), pp. 1671-1685.
    [12] Herder, J. L., 2001, Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms, Department of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands.
    [13] Ciupitu, L., 2018, “Adaptive Balancing of Robots and Mechatronic Systems,” Robotics, 7(4)
    [14] Lauzier, N., Gosselin, C., Laliberté, T., Tremblay, P., 2009, “Adaptive Gravity Compensation of Decoupled Parallel and Serial Manipulators Using a Passive Hydraulic Transmission,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(12), pp. 2871-2879.
    [15] Yang, Z. W., Lan, C. C., 2015, “An Adjustable Gravity-Balancing Mechanism Using Planar Extension and Compression Springs,” Mechanism and Machine Theory, 92, pp. 314-329.
    [16] Shieh, W.-B., Chen, C.-K., 2019, “Conceptual Design of a Two-Stage Variable Gravity Compensated Mechanism,” Advances in Mechanism and Machine Science, Uhl, T., Ed., Cham, 2019//, Springer International Publishing, pp. 1535-1543.
    [17] Nathan, R. H., 1985, “A Constant Force Generation Mechanism,” Journal of Mechanisms, Transmissions, and Automation in Design, 107(4), pp. 508-512.
    [18] Takesue, N., Ikematsu, T., Murayama, H., Fujimoto, H., 2011, “Design and Prototype of Variable Gravity Compensation Mechanism (Vgcm),” Journal of Robotics and Mechatronics, 23(2), pp. 249-257.
    [19] Chiang, W. H., Chen, D. Z., 2017, “Design of Planar Variable-Payload Balanced Articulated Manipulators with Actuated Linear Ground-Adjacent Adjustment,” Mechanism and Machine Theory, 109, pp. 296-312.
    [20] van Dorsser, W. D., Barents, R., Wisse, B. M., Schenk, M., Herder, J. L., 2008, “Energy-Free Adjustment of Gravity Equilibrators by Adjusting the Spring Stiffness,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(9), pp. 1839-1846.
    [21] Van Der Wijk, V., Herder, J. L., 2009, “Force Balancing of Variable Payload by Active Force-Balanced Reconfiguration of the Mechanism,” 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, ReMAR 2009, London, pp. 323-330.
    [22] Thierry Laliberte, C. G., Dalong Gao, Roland J. Menassa, 2013, Gravity Powered Balancing System, US Patent No. US 2013 0112641 A 1.
    [23] van Dorsser, W. D., Barents, R., Wisse, B. M., Herder, J. L., 2007, “Gravity-Balanced Arm Support with Energy-Free Adjustment,” Journal of Medical Devices, Transactions of the ASME, 1(2), pp. 151-158.
    [24] Vermeulen, M., Wisse, M., 2010, “Intrinsically Safe Robot Arm: Adjustable Static Balancing and Low Power Actuation,” International Journal of Social Robotics, 2(3), pp. 275-288.
    [25] Briot, S., Arakelian, V., 2015, “A New Energy-Free Gravity-Compensation Adaptive System for Balancing of 4-Dof Robot Manipulators with Variable Payloads,” 2015 IFToMM World Congress Proceedings, IFToMM 2015.
    [26] Esteveny, L., Barbe, L., Bayle, B., 2014, “A Novel Actuation Technology for Safe Physical Human-Robot Interactions,” Proceedings - IEEE International Conference on Robotics and Automation, pp. 5032-5037.
    [27] Lecours, A., Gosselin, C., 2010, “Reactionless Two-Degree-of-Freedom Planar Parallel Mechanism with Variable Payload,” Journal of Mechanisms and Robotics, 2(4), pp. 0.1010-1.

    無法下載圖示 全文公開日期 2024/08/21 (校內網路)
    全文公開日期 2024/08/21 (校外網路)
    全文公開日期 2024/08/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE