簡易檢索 / 詳目顯示

研究生: 周林佃
Lin-Tien Chou
論文名稱: 可重構下肢復健器之配重式靜平衡設計
Counterweight-Based Static Balancing Design of a Reconfigurable Lower-Limb Rehabilitation Device
指導教授: 郭進星
Chin-Hsing KUO
口試委員: 林柏廷
湯孝威
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 48
中文關鍵詞: 靜平衡機構遠端運動中心機構可重構機構重力補償
外文關鍵詞: statically balanced mechanism, remote center-of-motion mechanism, reconfigurable mechanism, gravity compensation
相關次數: 點閱:283下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一種配重式下肢肌力訓練器,該機構具有「偏移式遠端運動中心(offset Remote Center of Motion, RCM)」與「配重式靜平衡」等特點。首先,回顧以配重法為設計基礎的靜平衡機構以及遠端運動中心(RCM)之組成方式與運動特性。運用可重構機構搭配偏移式遠端運動中心之原理使機構可分別於兩種構形下作動,且與小腿接觸之桿件安裝於小腿之後方,如此便能方便收納以及節省工作空間。此外,透過一個配重即可使機構於兩種構形下皆具有靜平衡之效果。針對不同身高之使用者,也能藉由可調桿長之設計作出相對應之調整。最後,利用電腦輔助機構運動模擬軟體,驗證本設計之配重平衡之有效性。


    This thesis aims to propose a counterweight-based static balancing design for a reconfigurable lower limb muscle training device. The proposed mechanism design has two features: 1) The mechanism has an offset remote center-of-motion (RCM), which makes some links can be installed at different layers for saving space; 2) The two configurations of the mechanism can be statically balanced by using our counterweight only. The study first reviewed the composition and motion characteristics of statically balanced mechanisms and the RCM based on the counterweight method. Then, the use of offset RCM will facilitate the reconfigurable mechanism producing a rotation around the knee joint, which further leads some links able installed at different layers for saving workspace. In addition, the design uses only one counterweight to balance both configurations. And by changing the mass of the counterweight, the mechanism can adapt to different users and achieve variable resistance training. A concept of adjustable link lengths is suggested for accommodating the users with different lengths of leg segments. Finally, the design is validated by using Adams motion simulation software.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 符號表 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.2.1 配重式靜平衡機構 1.2.2 遠端運動中心(RCM)機構 1.3 研究目的 1.4 論文架構 第二章 可重構機構之配重靜平衡設計概念 2.1 現有機構說明 2.2 靜力平衡設計 2.2.1 配重連接方式 2.2.2 配重靜平衡設計 2.2.3 具偏移RCM之配重靜平衡設計 2.3 配重設計 2.4 運動尺寸與配重參數設計 2.5 小結 第三章 可調桿長設計 3.1 設計目標 3.2 設計概念 3.3 可調桿長與配重之說明 3.4 小結 第四章 電腦模擬 4.1 MD Adams軟體介紹 4.2 CAD模型定義 4.3 軟體設定 4.4 配重平衡模擬驗證 4.5 小結 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

    [1] Tseng, T. Y., Lin, Y. J., Hsu, W. C., Lin, L. F., Kuo, C. H., 2017, “A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation with Switchable Hip/Knee-Only Exercise,” ASME Journal of Mechanisms and Robotics, 9(4), p. 041002.
    [2] Ceccarell, M., 2000, Proceedings of the International Symposium on History of Machines and Mechanisms, University of Cassino, Italy, May 11-13.
    [3] Lowen, G. G., Tepper, F. R., Berkof, R. S., 1983, “Balancing of Linkages-an Update,” Mechanism and Machine Theory, 18, pp. 213-220.
    [4] Whitney, J. P., Hodgins, J. K., 2014, “A Passively Safe and Gravity-Counterbalanced Anthropomorphic Robot Arm,” International Conference on Robotics & Automation (ICRA), Hong Kong, China, May 31 - June 7, pp. 6168-6173.
    [5] Wijk, V. V. D., Herder, J. L., 2009, “Synthesis of Dynamically Balanced Mechanisms by Using Counter-Rotary Countermass Balanced Double Pendula,” ASME Journal of Mechanical Design, 131(11), p. 111003.
    [6] Kawamura, A., Gang, B., Uemura, M., Kawamura, S., 2015, “Mechanism and Control of Robotic Arm Using Rotational Counterweights,” International Conference on Robotics and Automation, Seattle, Washington, USA, May 26-30, pp. 2716-2721.
    [7] Arakelian, V., 2015, “Gravity Compensation in Robotics,” Advanced Robotics, 30(2), pp. 79-96.
    [8] Lindbergh, C., Basilica, S., Charleston, S. C., 1980, “Variable Counterweight System.” U.S. Patent No. US4236605.
    [9] Laliberte, T., Q., Gosselin, C., Gao, D., Menassa, R. J., 2013, “Gravity Powered Balancing System,” U.S. Patent No. US0112641.
    [10] Lacasse, M. A., Lachance, G., Boisclair, J., Ouellet, J., Gosselin, C., 2013, “On the Design of a Statically Balanced Serial Robot Using Remote Counterweights,” International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May 6-10, pp. 4189-4194.
    [11] Nelson, C., Thienpont, R., Shinde, A., 2017, “Pose-Independent Counterweighting of Cable-Suspended Payloads with Application to Rehabilitation,” New Trends in Mechanism and Machine Science, 43, pp. 345-353.
    [12] Lenzo, B., Fontana, M., Marcheschi, S., Salsedo, F., Frisoli, A., Bergamasco, M., 2015, “Trackhold: A Novel Passive Arm-Support Device,” ASME Journal of Mechanisms and Robotics, 8(2), p. 021007.
    [13] Taylor, R. H., Funda, J., Grossman, D. D., Grossman, D. D., Karidis, J. P., Larose, D. A., 1994, “Improved remote center-of-motion robot for surgery. European Patent No. EP0595291.
    [14] Kuo, C. H., Dai, J. S., Dasgupta, P., 2012, “Kinematic Design Considerations for inimally Invasive Surgical Robots: An Overview,” International Journal of Medical Robotics and Computer Assisted Surgery, 8(2), pp. 127-145.
    [15] Prisco, G., Rosa, D. J., 2010, “Robotic Surgical System with Joint Motion Controller Adapted to Reduce Instrument Tip Vibrations,” U.S. Patent No. US7689320B2.
    [16] Baumann, R., Maeder, W., Glauser, D., Clavel, R., 1997, “Pantoscope: A Spherical Remote-Center-of-Motion Parallel Manipulator for Force Reflection,” Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, USA, April 20-25, pp. 718-723.
    [17] 李高逵,2013,新型開顱手術機器人之運動設計,碩士論文,機械工程系,國立台灣科技大學,台北市。
    [18] Yip, H. M., Li, P., Navarro-Alarcon, D., Wang, Z., Liu, Y. H., 2014, “A New Circular-Guided Remote Center of Motion Mechanism for Assistive Surgical Robots,” International Conference on Robotics and Biomimetics, Bali, Indonesia, December 5-10, pp. 217-222.
    [19] Winter, D. A., 2009, Biomechanics and Motor Control of Human Movement, 4 ed., John Wiley & Sons, Hoboken, New Jersey, United States of America. pp. 82-93.
    [20] Hamlin, G. J., Sanderson, A. C., 1998, Tetrobot: A Modular Approach to Reconfigurable Parallel Robotics, Kluwer Academic Publishers, Boston, MA, United States of America.

    QR CODE