簡易檢索 / 詳目顯示

研究生: 林祐任
You-Ren Lin
論文名稱: 具負載單連桿機構之多穩態設計
Multi-Stable Design of a Single-Link Mechanism with Payload
指導教授: 郭進星
Chin-Hsing KUO
口試委員: 林柏廷
湯孝威
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 52
中文關鍵詞: 多穩態機構靜力平衡重力補償靜平衡機構
外文關鍵詞: multi-stable mechanism, static balancing, gravity compensation, statically balanced mechanism
相關次數: 點閱:403下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一具負載單連桿機構之多穩態設計方法,藉由齒輪機構的輔助,本方法可使一具負載之單連桿機構產生多個穩態位置以及變換穩態位置。研究首先回顧撓性與連桿穩態機構之發展現況,接著透過能量法分析機構穩態特性,藉以產生兩條穩態條件方程式。然後,經由彈簧與負載參數之間的關係,找出穩態位置之通式,得知齒輪比與彈簧連接桿的初始位置對於穩態位置之影響。據此,由穩態位置通式提出多穩態機構設計之方法,將需求穩態位置的數量做為設計之依據,找出適當的齒輪比與彈簧連接桿的初始位置,並由設計參數取得對應的彈簧係數。最後,舉出一個雙穩態機構設計與ㄧ個三穩態機構設計來說明設計流程,並用Adams來驗證機構設計結果的正確性。


    The thesis presents a multi-stable design method for single-link mechanisms with payloads. By following the design procedure, the payload on the mechanism can have multiple stable positions which are changeable by regulating different design parameters. The mechanism is composed of a load arm and a spring force arm connected to two matching, respectively. First, we reviewed the developments of the compliant and linkage stable mechanisms, and used energy method to find the steady-state equations. Next, the general formulae of the stable positions were obtained from the relationship between the payload, spring, gear ratio and initial position of the spring force arm. Then, we proposed a design method of the single-link multi-stable mechanism with a payload. When an appropriate gear ratio and the initial position of the spring force arm are defined, the corresponding spring parameters can be obtained. Finally, a bistable mechanism design and a tri-stable mechanisms design are presented to illustrate the design procedure. After that, we used Adams to verify the correctness of the design results.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.2.1 撓性穩態機構 1.2.2 連桿穩態機構 1.3 研究目的 1.4 論文架構 第二章 具負載單連桿機構之穩態分析 2.1 基本假設 2.2 單連桿多穩態機構 2.3 穩態位置分析 2.3.1 彈簧係數與載重之關係 2.3.2 初始位置與穩態位置之關係 2.4 小結 第三章 多穩態機構設計方法 3.1 步驟說明 3.2 小結 第四章 設計範例 4.1 雙穩態需求機構之設計 4.2 三穩態需求機構之設計 4.3 小結 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻 附錄一 彈簧參數與載重關係之範圍 附錄二 穩態必要條件方程式之解析解

    [1] Wilcox, D. L., Howell, L. L., 2005, “Fully Compliant
    Tensural Bistable Micromechanisms (FTBM),” Journal of
    Microelectromechanical Systems, 14(6), pp. 1223-1235.
    [2] Chen, G., Wilcox, D. L., Howell, L. L., 2009, “Fully
    Compliant Double Tensural Tristable Micromechanisms
    (DTTM),” Journal of Micromechanics and Microengineering,
    19(2), p. 025011.
    [3] Jensen, B. D., Parkinson, M. B., Kurabayashi, K., Howell,
    L. L., Baker, M. S., 2001, “Design Optimization of a
    Fully-Compliant Bistable Micro-Mechanism,” ASME
    International Mechanical Engineering Congress and
    Exposition, New York, NY, 11-16 November.
    [4] Jensen, B. D., Howell, L. L., Salmon, L. G., 1999, “Design
    of Two-Link, in-Plane, Bistable Compliant Micro-
    Mechanisms,” ASME Journal of Mechanical Design, 121(3),
    pp. 416-423.
    [5] Masters, N. D., Howell, L. L., 2003, “A Self-Retracting
    Fully Compliant Bistable Micromechanism,” Journal of
    Microelectromechanical Systems, 12(3), pp. 273-280.
    [6] Jensen, B. D., Howell, L. L., 2004, “Bistable
    Configurations of Compliant Mechanisms Modeled Using Four
    Links and Translational Joints,” ASME Journal of
    Mechanical Design, 126(4), pp. 657-666.
    [7] Jensen, B. D., Howell, L. L., 2003, “Identification of
    Compliant Pseudo-Rigid-Body Four-Link Mechanism
    Configurations Resulting in Bistable Behavior,” ASME
    Journal of Mechanical Design, 125(4), pp. 701-708.
    [8] Qiu, J., Lang, J. H., Slocum, A. H., 2004, “A Curved-Beam
    Bistable Mechanism,” Journal of Microelectromechanical
    Systems, 13(2), pp. 137-146.
    [9] Tran, N. D. K., Wang, D.-A., 2017, “Design of a Crab-Like
    Bistable Mechanism for Nearly Equal Switching Forces in
    Forward and Backward Directions,” Mechanism and Machine
    Theory, 115, pp. 114-129.
    [10] Wang, D. A., Chen, J. H., Pham, H. T., 2014, “A Tristable
    Compliant Micromechanism with Two Serially Connected
    Bistable Mechanisms,” Mechanism and Machine Theory, 71,
    pp. 27-39.
    [11] Mutlu, R., Alıcı, G., 2010, “A Multistable Linear
    Actuation Mechanism Based on Artificial Muscles,” ASME
    Journal of Mechanical Design, 132(11), p. 111001.
    [12] Sarojini, D., Lassche, T. J., Herder, J. L.,
    Ananthasuresh, G. K., 2016, “Statically Balanced Compliant
    Two-Port Bistable Mechanism,” Mechanism and Machine
    Theory, 102, pp. 1-13.
    [13] Deb, M., Sen, D., 2014, “Design of Double Toggle Switching
    Mechanisms,” Mechanism and Machine Theory, 71, pp. 163-
    190.
    [14] Deb, M., Sen, D., 2013, “Parametric Study of the Behavior
    of Double Toggle Switching Mechanisms,” Mechanism and
    Machine Theory, 63, pp. 8-27.
    [15] Cochran, J. C., Hong, J., Dollar, A. M., 2017, “Fusion
    Clutch: A Bi-Stable Latching Mechanism for Human-Safe
    Robots,” ASME International Design Engineering Technical
    Conferences and Computers and Information in Engineering
    Conference, Cleveland, Ohio, USA, 6-9 August.
    [16] Howden Joinery Ltd., 2015; Available from:
    https://www.howdens.com/.
    [17] MantelMount Llc., 2017; Available from:
    https://www.mantelmount.com/.

    QR CODE