簡易檢索 / 詳目顯示

研究生: 蔡旭凱
Hsu-Kai Tsai
論文名稱: 連桿型遠端運動中心機構之靜平衡設計
Static Balancing Design of Linkage-Type Remote Center-of-Motion Mechanisms
指導教授: 郭進星
Chin-Hsing KUO
口試委員: 郭進星
Chin-Hsing KUO
湯孝威
Hsiao-Wei Tang
林柏廷
Po-Ting Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 69
中文關鍵詞: 遠端運動中心靜平衡重力補償靜平衡機構
外文關鍵詞: remote center-of-motion, static balancing, gravity compensation, statically balanced mechanism
相關次數: 點閱:355下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遠端運動中心機構(Remote center-of-motion)是一個可以讓輸出桿在運動過程中始終繞著一固定點旋轉的特殊機構,而該固定點即遠端運動中心,此機構已廣為應用在機器人微創手術中。在工業機械設備或機械手臂中,常須使用靜平衡以得到較佳的機械運動特性。已有文獻指出,若微創手術機器人具靜平衡特性,可提升機器人的安全性,並有助於手動重新定位;然而,目前手術機器人的遠端運動中心機構靜平衡設計仍非常少見,本研究即探討遠端運動中心機構之靜平衡設計,將傳統靜平衡理論中的配重法與彈簧法應用在遠端運動中心機構上,藉由搭配不同的方法來平衡機構中的多個自由度運動。本研究共提出三種不同的靜平衡設計概念,分別為純彈簧設計、純配重設計與彈簧加配重之整合設計。我們亦使用Adams機構運動模擬軟體驗證靜平衡設計的正確性。


    Remote center-of-motion (RCM) mechanisms are a mechanism whose output link can always rotate around a fixed point, which is so called the “remote center-of-motion.” This kind of mechanisms commonly works in robotic minimally invasive surgery. On the other hand, static balancing is practically useful in many mechanical transmissions and robot arms. For surgical applications, it can be used to enhance surgical safety and assist manual reposition of the surgical tool. The current static balancing for RCM mechanisms, however, is rare; therefore, the aim of this thesis is to introduce the theories of static balancing into linkage-type RCM mechanisms. Accordingly, we have come up with three different design concepts including (1) pure spring, (2) pure counterweight, and (3) spring-and-counterweight balancing designs. We also use Adams simulation software to verify these design concepts.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 遠端運動中心機構 2 1.2.2 靜平衡機構 6 1.2.3 靜平衡遠端運動中心機構 9 1.3 研究目的 11 1.4 論文架構 11 第二章 連桿型RCM機構之靜力平衡 13 2.1 靜平衡原理 13 2.1.1 配重法 14 2.1.2 彈簧法 15 2.2 旋轉自由度之平衡 17 2.3 滑行自由度之平衡 23 2.4 1R1T連桿型RCM機構之平衡 26 2.4.1 彈簧-彈簧之平衡 26 2.4.2 配重-配重之平衡 27 2.4.3 彈簧-配重之平衡 29 2.5 2R1T連桿型RCM機構之平衡 29 2.6 小結 31 第三章 設計範例與驗證 33 3.1 尺寸說明 33 3.2 設計範例 36 3.2.1 1R1T連桿型RCM機構 37 3.2.2 2R1T連桿型RCM機構 39 3.3 模擬驗證 42 3.3.1 1R1T連桿型RCM機構 43 3.3.2 2R1T連桿型RCM機構 46 3.4 比較與討論 49 3.4.1 機構比較 49 3.4.2 討論 50 3.5 小結 51 第四章 結論與未來展望 53 4.1 結論 53 4.2 未來展望 54 參考文獻 55

    [1] Taylor, R. H., Funda, J., Eldridge, B., Gomory, S., Gruben, K., LaRose, D., Talamini, M., Kavoussi, L., Anderson, J., 1995, “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Engineering in Medicine and Biology, 14(3), pp. 279-288.
    [2] Taylor, R., Jensen, P., Whitcomb, L., Barnes, A., Kumar, R., Stoianovici, D., Gupta, P., Wang, Z. X., DeJuan, E., Kavoussi, L., 1999, “A Steady-Hand Robotic System for Microsurgical Augmentation,” The International Journal of Robotics Research, 18(12), pp. 1201-1210.
    [3] Kuo, C. H., Dai, J. S., Dasgupta, P., 2012, “Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview,” The International Journal of Medical Robotics and Computer Assisted Surgery, 8(2), pp. 127-145.
    [4] Quaglia, G., Yin, Z., 2015, “Static Balancing of Planar Articulated Robots,” Frontiers of Mechanical Engineering, 10(4), pp. 326-343.
    [5] Whitney, J. P., Hodgins, J. K., 2014, “A Passively Safe and Gravity-Counterbalanced Anthropomorphic Robot Arm,” IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May-7 June, pp. 6168-6173.
    [6] Chung, D. G., Hwang, M. H., Won, J., Kwon, D. S., 2016, “Gravity Compensation Mechanism for Roll-Pitch Rotation of a Robotic Arm,” IEEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea, 9-14 October, pp. 338-343.
    [7] Taylor, R. H., Funda, J., Grossman, D. D., Karidis, J. P., Larose, D. A., 1994, Improved Remote Center-of-Motion Robot for Surgery, European Patent No. EP0595291.
    [8] Sanchez, D., Black, M., Hammond, S., 2002, Pivot Point Arm for a Robotic System Used to Perform a Surgical Procedure, United States Patent No. US 20140188130 A1.
    [9] Buess, G. F., Arezzo, A., Schurr, M. O., Ulmer, F., Fisher, H., Gumb, L., Testa, T., Nobman, C., 2000, “A New Remote-Controlled Endoscope Positioning System for Endoscopic Solo Surgery. The Fips Endoarm,” Surgical Endoscopy, 14(4), pp. 395-399.
    [10] Navarro, J. S., Garcia, N., Perez, C., Fernandez, E., Saltaren, R., Almonacid, M., 2010, “Kinematics of a Robotic 3UPS1S Spherical Wrist Designed for Laparoscopic Applications,” The International Journal of Medical Robotics and Computer Assisted Surgery, 6(3), pp. 291-300.
    [11] Stoianovici D, Whitcomb L. L., Anderson J. H., 1998, “A Modular Surgical Robotic System for Image Guided Percutaneous Procedures,” International Conference on Medical Image Computing and Computer-Assisted Intervention, Cambridge, Massachusetts, USA, 11-13 October, pp. 404-410.
    [12] Schena, B., 2007, Center Robotic Arm with Five-Bar Spherical Linkage for Endoscopic Camera, United States Patent No. US 8469945 B2.
    [13] Ikuta, K., Sasaki, K., Yamamoto, K., Shimada, T., 2002, “Remote Microsurgery System for Deep and Narrow Space-Development of New Surgical Procedure and Micro-Robotic Tool,” International Conference on Medical Image Computing and Computer-Assisted Intervention, Tokyo, Japan, 25-28 September, pp. 163-172.
    [14] Lehman, A. C., Tiwari, M. M., Shah, B. C., 2010, “Recent Advances in the Cobrasurge Robotic Manipulator and Dexterous Miniature in Vivo Robotics for Minimally Invasive Surgery.,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(7), pp. 1487-1494.
    [15] Nawrat, Z., Kostka, P., 2006, “Polish Cardio-Robot 'Robin Heart'. System Description and Technical Evaluation,” The International Journal of Medical Robotics and Computer Assisted Surgery, 2(1), pp. 36-44.
    [16] Davies, B., Starkie, S., Harris, S. J., Agterhuis, E., Paul, V., Auer, L. M., 2000, “Neurobot-A Special-Purpose Robot for Neurosurgery,” IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24-28 April, pp. 4103-4108.
    [17] Rosen J, Brown J. D., Chang L., 2002, “The Bluedragon-A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools in-Vivo.,” IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11-15 May, pp. 1876-1881.
    [18] Zong, G., Pei, X., Yu, J., Bi, S., 2008, “Classification and Type Synthesis of 1-Dof Remote Center of Motion Mechanisms,” Mechanism and Machine Theory, 43(12), pp. 1585-1595.
    [19] Kobayashi, Y., Chiyoda, S., Watabe, K., Okada, M., Nakamura, Y., 2002, “Small Occupancy Robotic Mechanisms for Endoscopic Surgery,” International Conference on Medical Image Computing and Computer-Assisted Intervention, Tokyo, Japan, 25-28 September, pp. 75-82.
    [20] Guthart, G., Salisbury, J. K., 2000, “The Intuitivetm Telesurgery System: Overview and Application,” IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24-28 April, pp. 618-621.
    [21] Nowlin, W. C., Guthart, G. S., Salisbury, J. K., Niemeyer, G. D., 2002, Repositioning and Reorientation of Masterslave Relationship in Minimally Invasive Telesurgery, United States Patent No. US 6459926 B1.
    [22] Kuo, C. H., Dai, J. S., 2012, “Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery,” ASME Journal of Medical Devices, 6(2), p. 021008.
    [23] Li, J., Zhang, G., Müller, A., Wang, S., 2013, “A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes,” ASME Journal of Mechanical Design, 135(9), p. 091009.
    [24] Arakelian, V., 2016, “Gravity Compensation in Robotics,” Advanced Robotics, 30(2), pp. 79-96.
    [25] Lalibert´e, T., Gosselin, C. M., Jean, M., 1999, “Static Balancing of 3-Dof Planar Parallel Mechanisms,” IEEE/ASME Transactions on Mechatronics, 4(4), pp. 363-377.
    [26] Lenzo, B., Fontana, M., Marcheschi, S., Salsedo, F., Frisoli, A., Bergamasco, M., 2015, “Trackhold: A Novel Passive Arm-Support Device,” ASME Journal of Mechanisms and Robotics, 8(2), p. 021007.
    [27] Russo, A., Sinatra, R., Xi, F., 2005, “Static Balancing of Parallel Robots,” Mechanism and Machine Theory, 40(2), pp. 191-202.
    [28] Nathan, R. H., 1985, “A Constant Force Generation Mechanism ” ASME Journal of Mechanisms, Transmissions, and Automation in Design, 107(4), pp. 508-512.
    [29] Streit, D. A., Shin, E., 1993, “Equilibrators for Planar Linkages,” ASME Journal of Mechanical Design, 115(3), pp. 604-611.
    [30] Rahman, T., Ramanathan, R., Seliktar, R., Harwin, W., 1995, “A Simple Technique to Passively Gravity-Balance Articulated Mechanisms,” ASME Journal of Mechanical Design, 117(4), pp. 655-658.
    [31] Tseng, T. Y., Lin, Y. J., Hsu, W. C., Lin, L. F., Kuo, C. H., 2017, “A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation with Switchable Hip/Knee-Only Exercise,” ASME Journal of Mechanisms and Robotics, 9(4), p. 041002.
    [32] Morita, T., Kuribara, F., Shiozawa, Y., Sugano, S., 2003, “A Novel Mechanism Design for Gravity Compensation in Three Dimensional Space,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe, Japan, 20-24 July, pp. 163-168.
    [33] Kuo, C. H., Lai, S. J., 2015, “Design of a Novel Statically Balanced Mechanism for Laparoscope Holders with Decoupled Positioning and Orientating Manipulation,” ASME Journal of Mechanisms and Robotics, 8(1), p. 015001.
    [34] Lin, P. Y., Shieh, W. B., Chen, D. X., 2012, “Design of Statically Balanced Planar Articulated Manipulators with Spring Suspension,” IEEE Transactions on Robotics, 28(1), pp. 12-21.
    [35] Deepak, S. R., Ananthasuresh, G. K., 2012, “Perfect Static Balance of Linkages by Addition of Springs but Not Auxiliary Bodies,” ASME Journal of Mechanisms and Robotics, 4(2), p. 021014.
    [36] Chu, Y. L., Kuo, C. H., 2017, “A Single-Degree-of-Freedom Self-Regulated Gravity Balancer for Adjustable Payload,” ASME Journal of Mechanisms and Robotics, 9(2), p. 021006.
    [37] Hung, Y. C., Kuo, C. H., 2017, “A Novel One-Dof Gravity Balancer Based on Cardan Gear Mechanism,” European Conference on Mechanism Science, Nantes, France, 20-23 September, pp. 261-268.
    [38] Hsiu, W. H., Syu, F. C., Kuo, C. H., 2015, “Design and Implementation of a New Statically Balanced Mechanism for Slider-Type Desktop Monitor Stands,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(9), pp. 1671-1685.
    [39] Shieh, W. B., Chou, B. S., 2015, “Gravity Balancing of a Spatial Articulated Manipulator Based on a New Spring Mechanism,” ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, Massachusetts, USA, 2-5 August, pp. 1-8.
    [40] Herder, J. L., 2001, Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms, Ph. D. Thesis, Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands.

    QR CODE