簡易檢索 / 詳目顯示

研究生: 李建邦
Chien-Pang Lee
論文名稱: 在微陣列資料中進行特徵選取與預測基因調控網路之研究
Feature Selection and Gene Regulatory Network Prediction on Microarray Data
指導教授: 呂永和
Yungho Leu
楊維寧
Wei-Ning Yang
口試委員: 鮑興國
Hsing-Kuo Pao
李瑞庭
Anthony J.T. Lee
葉耀明
Yao-Ming Yeh
學位類別: 博士
Doctor
系所名稱: 管理學院 - 資訊管理系
Department of Information Management
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 87
中文關鍵詞: 動態時間校正特徵選取基因演算法基因調控網路微陣列資料分析粒子群最佳化卡方同質性檢定
外文關鍵詞: Dynamic time warping, Feature selection, Genetic algorithm, Gene regulatory networks, Microarray data analysis, Particle swarm optimization, χ2-test for homogeneity
相關次數: 點閱:410下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於生物學家希望能夠了解並偵測生物體內基因的表現情形,因此,有許多實驗技術陸續被發展應用於基因偵測的議題。近年來,由於微陣列技術不同於過去常被用來研究基因表現的傳統偵測技術,因此,微陣列技術已經成為研究基因表現的重要技術之一,例如:北方墨點法、南方墨點法、菌落雜交法及墨點分析等方法,在一次的實驗中只能偵測一個或少數基因的表現情形,但微陣列技術可以在一次的實驗中,同時偵測成千上萬基因的表現量,因此,微陣列技術大幅提升了研究基因表現的效率。而『特徵選取』與『預測基因調控網路』為微陣列資料分析中的兩個重要研究議題。本論文提出了兩個新的方法,並分別成功應用於『特徵選取』與『預測基因調控網路』兩個研究議題上。在『特徵選取』的部份,雖然許多方法已經被提出來進行微陣列資料的特徵選取,但這些方法大多數只能針對基因的重要性進行排序,無法直接建議應該挑選的基因數量。為了解決這個問題,我們提出了一個新的方法稱為genetic algorithm with dynamic parameter setting (簡稱GADP),首先,我們使用GADP來產生大量的基因子集合,並根據每一個出現在基因子集合裡的頻率進行重要的排序,接著我們利用卡方分析中的同質性檢定(χ2-test for homogeneity)來決定應該挑選基因的數量。最後,為了驗證所挑選的基因是否真為重要的基因,我們使用支援向量機來進行樣本分類的判別。在本研究中,總共使用了六祖不同的微陣列資料,並藉由這些資料比較GADP與其他方法的效能,根據實驗結果顯示,GADP在挑選基因的數量及分類的正確率上的表現都比既有的方法為佳。
    在『預測基因調控網路』方面,由於許多預測基因調控網路的方法都忽略了基因之間的表現可能會存在時間延遲反應的問題,因此,本研究提出了一個新的預測基因調控網路的方法,我們將此方法稱為GA/PSO with DTW。GA/PSO with DTW使用動態時間校正(dynamic time warping)演算法來判斷任兩基因之間的表現是否存在時間延遲的問題。除此之外,我們使用粒子群最佳化(particle swarm optimization)演算法來找出可針對微陣列資料進行離散化的兩個門檻值。接著,根據離散化後的微陣列資料及基因表現的時間延遲反應判斷結果,GA/PSO with DTW利用基因演算法產生許多候選的基因調控網路,再從中挑選出最佳的基因調控網路。為了判斷GA/PSO with DTW的分析效果,我們使用兩組酵母菌資料的子調控網路來進行驗證。實驗結果顯示,GA/PSO with DTW在預測基因調控網路的敏感性及明確性都比其餘既有的方法還要好。


    In response to the need of the biologists to understand and measure the expression levels of genes in the living organisms, many technologies have been proposed. Among the proposed technologies, microarray technology is one of the most popular and powerful techniques for functional genomics study in the recent years. In contrast to the other existing technology such as northern blots, southern blots, colony hybridizations and dot blots which identify and measure only one gene or a few genes in an experiment, microarray technology can measure the expression levels of thousands of genes simultaneously in an experiment. Two important research issues of microarray data analysis are “Feature Selection” and “Gene Regulatory Network Prediction (GRN prediction)” from the microarray data. In this thesis, we propose novel methods for feature selection and constructing GRNs. In feature selection, although many methods have been proposed to select relevant genes, they only gave the ranks of importance of the genes. They did not suggest the number of genes needed for the analysis. We therefore propose a hybrid method, which is called genetic algorithm with dynamic parameter setting (GADP), to counter this problem. In this method, we first use GADP to generate a large number of gene subsets and rank the genes according to their occurrence frequencies in the gene subsets. Then, we use the χ2-test for homogeneity to select a proper number of the top-ranked genes for data analysis. Finally, we use a support vector machine (SVM) classifier to verify the efficiency of the selected genes. Six different microarray datasets are used to compare the performance of the GADP method with the other existing methods. The experimental results show that the GADP method is better than the existing methods in terms of number of selected genes and the classification accuracy.
    Although many methods have been proposed to construct GRNs, most of them ignored the time delay regulatory relation between genes. In this thesis, we propose a novel hybrid method, termed GA/PSO with DTW method, to construct GRNs from microarray data. The GA/PSO with DTW method uses the dynamic time warping (DTW) algorithm to determine whether a time delay relation exists between two genes. In addition, it uses the particle swarm optimization (PSO) algorithm to find two thresholds for discretizing the original microarray data. Based on the discretized data and the time delay relation among genes, the GA/PSO with DTW method uses a genetic algorithm to generate many candidate GRNs from which the predicted GRN is inferred. Two real-life sub-networks of yeast are used to verify the performance of the proposed method. The experimental results show that the GA/PSO with DTW method is better than the existing methods in terms of the prediction sensitivity and specificity.

    Chinese Abstract I Abstract III Acknowledgement V Table of Contents II List of Figures V List of Tables VII Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Feature Selection 2 1.1.2 Gene Regulatory Network Prediction 3 1.2 Motivation 3 1.2.1 Feature Selection 3 1.2.2 Gene Regulatory Network Prediction 4 1.3 Contribution 5 1.3.1 Feature Selection 5 1.3.2 Gene Regulatory Network Prediction 6 1.4 Overview of the Dissertation 6 Chapter 2 An Introduction to Microarray 8 2.1 Microarray Experiment 8 2.2 Microarray Data 12 Chapter 3 Related Work 13 3.1 Literature Reviews of Feature Selection 13 3.2 Literature Reviews of GRN Prediction 14 3.2.1 Association rules 15 3.2.2 Bayesian network and Dynamic Bayesian network 15 3.2.3 Soft computing 15 3.3 Genetic Algorithm 16 3.4 Particle Swarm Optimization 22 3.5 Dynamic Time Warping 24 3.6 Support Vector Machine 28 3.7 K-Nearest Neighbors 29 3.8 χ2-Test for Homogeneity 30 Chapter 4 A Novel Hybrid Feature Selection Method for Microarray Data Analysis 32 4.1 Introduction 32 4.2 Microarray Dataset 34 4.3 Genetic Algorithms with Dynamic Parameter Setting 36 4.3.1 Initial Feature Selection 36 4.3.2 Genetic Algorithm with Dynamic Parameter Setting 37 4.3.3 Support Vector Machine 42 4.4 GADP vs. SGA 44 4.5 Experiments and Results 46 4.6 Summary 52 Chapter 5 Constructing Gene Regulatory Networks from Microarray Data Using GA/PSO with DTW 53 5.1 Introduction 53 5.2 Time-Series Microarray Data 55 5.3 GA/PSO with DTW 57 5.4 Experiment and Results 66 5.4.1 Datasets 66 5.4.2 Performance Measure 67 5.4.3 Analysis and Performance 67 5.5 Summary 72 Chapter 6 Conclusion 73 6.1 Feature Selection 73 6.2 Gene Regulatory Network Prediction 74 Bibliography 76

    [1] M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray, Science, 270 (1995) 467-470.
    [2] X. Zhou, D.P. Tuck, MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data, Bioinformatics, 23 (2007) 1106-1114.
    [3] C.-P. Lee, Y. Leu, A novel hybrid feature selection method for microarray data analysis, Applied Soft Computing, In Press, Accepted Manuscript (2009).
    [4] G. Piatetsky-Shapiro, P. Tamayo, Microarray data mining: facing the challenges, SIGKDD Explor. Newsl., 5 (2003) 1-5.
    [5] E.S. Fung, M.K. Ng, On sparse Fisher discriminant method for microarray data analysis, Bioinformation, 2 (2007) 230-234.
    [6] Z.S.H. Chan, L. Collins, N. Kasabov, Bayesian learning of sparse gene regulatory networks, Biosystems, 87 (2007) 299-306.
    [7] S.P. Li, J.J. Tseng, S.C. Wang, Reconstructing gene regulatory networks from time-series microarray data, Physica A: Statistical Mechanics and its Applications, 350 (2005) 63-69.
    [8] M.S. Dasika, A. Gupta, C.D. Maranas, J.D. Varner, A Mixed Integer Linear Programming (MILP) Framework for Inferring Time Delay in Gene Regulatory Networks, in: R.B. Altman, A.K. Dunker, L. Hunter, T.A. Jung, T.E. Klein (Eds.) Pacific Symposium on Biocomputing, World Scientific, 2004, pp. 474-485.
    [9] M. Babu, Introduction to Microarray Data Analysis, in: R. Grant (Ed.) Computational Genomics: Theory and Applications, Horizon Press 2004.
    [10] D.J. Duggan, M. Bittner, Y. Chen, P. Meltzer, J.M. Trent, Expression profiling using cDNA microarrays Nature Genetics, 21 (1999) 10–14
    [11] R.M. Simon, E.L. Korn, L.M. McShane, M.D. Radmacher, G.W. Wright, Y. Zhao, Design and Analysis of DNA Microarray Investigations, Springer, New York, 2003.
    [12] Y. Chen, E.R. Dougherty, M.L. Bittner, Ratio-based decisions and the quantitative analysis of cDNA microarray images, Journal of Biomedical Optics, 2 (1997) 364-374.
    [13] G.K. Smyth, T. Speed, Normalization of cDNA microarray data, Methods, 31 (2003) 265-273.
    [14] T. McIntosh, S. Chawla, High Confidence Rule Mining for Microarray Analysis, Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 4 (2007) 611-623.
    [15] P. Ma, W. Zhong, Y. Feng, J.S. Liu, Bayesian Functional Data Clustering for Temporal Microarray Data, International Journal of Plant Genomics, 2008 (2008) 231897.
    [16] J.R. de Haan, R. Wehrens, S. Bauerschmidt, E. Piek, R.C.v. Schaik, L.M.C. Buydens, Interpretation of ANOVA models for microarray data using PCA, Bioinformatics, 23 (2007) 184-190.
    [17] L. Wang, F. Chu, W. Xie, Accurate Cancer Classification Using Expressions of Very Few Genes, Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 4 (2007) 40-53.
    [18] J.-H. Cho, D. Lee, J.H. Park, I.-B. Lee, Gene selection and classification from microarray data using kernel machine, FEBS Letters, 571 (2004) 93-98.
    [19] I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bittner, R. Simon, P. Meltzer, B. Gusterson, M. Esteller, M. Raffeld, Z. Yakhini, A. Ben-Dor, E. Dougherty, J. Kononen, L. Bubendorf, W. Fehrle, S. Pittaluga, S. Gruvberger, N. Loman, O. Johannsson, H. Olsson, B. Wilfond, G. Sauter, O.-P. Kallioniemi, A. Borg, J. Trent, Gene-Expression Profiles in Hereditary Breast Cancer, N Engl J Med, 344 (2001) 539-548.
    [20] E. Huerta, B. Duval, J.-K. Hao, Fuzzy Logic for Elimination of Redundant Information of Microarray Data, Genomics, Proteomics & Bioinformatics, 6 (2008) 61-73.
    [21] H. Huang, F. Chang, ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data, Biosystems, 90 (2007) 516-528.
    [22] R. Debnath, T. Kurita, An Evolutionary Approach for Gene Selection and Classification of Microarray Data Based on SVM Error-Bound Theories, Biosystems, In Press, Accepted Manuscript (2010).
    [23] Q. Shen, W.-M. Shi, W. Kong, Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data, Computational Biology and Chemistry, 32 (2008) 53-60.
    [24] C. Creighton, S. Hanash, Mining gene expression databases for association rules, Bioinformatics, 19 (2003) 79-86.
    [25] Z. Huang, J. Li, H. Su, G.S. Watts, H. Chen, Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining, Decision Support Systems, 43 (2007) 1207-1225.
    [26] H.-C. Wang, Y.-S. Lee, Gene Network Prediction from Microarray Data by Association Rule and Dynamic Bayesian Network, in: Computational Science and Its Applications – ICCSA 2005, 2005, pp. 309-317.
    [27] N. Friedman, M. Linial, I. Nachman, D. Pe'er, Using Bayesian Networks to Analyze Expression Data, Journal of Computational Biology, 7 (2000) 601-620.
    [28] S.Y. Kim, S. Imoto, S. Miyano, Inferring gene networks from time series microarray data using dynamic Bayesian networks, Brief Bioinform, 4 (2003) 228-235.
    [29] S. Kim, S. Imoto, S. Miyano, Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data, Biosystems, 75 (2004) 57-65.
    [30] T.-F. Liu, W.-K. Sung, A. Mittal, Model gene network by semi-fixed Bayesian network, Expert Systems with Applications, 30 (2006) 42-49.
    [31] M. Zou, S.D. Conzen, A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data, Bioinformatics, 21 (2005) 71-79.
    [32] Z.S.H. Chan, I. Havukkala, V. Jain, Y. Hu, N. Kasabov, Soft computing methods to predict gene regulatory networks: An integrative approach on time-series gene expression data, Applied Soft Computing, 8 (2008) 1189-1199.
    [33] R. Eriksson, B. Olsson, Adapting genetic regulatory models by genetic programming, Biosystems, 76 (2004) 217-227.
    [34] T. Tian, Stochastic models for inferring genetic regulation from microarray gene expression data, Biosystems, In Press, Corrected Proof (2009).
    [35] R. Linden, A. Bhaya, Evolving fuzzy rules to model gene expression, Biosystems, 88 (2007) 76-91.
    [36] P.C.Y. Chen, J.W. Chen, A Markovian approach to the control of genetic regulatory networks, Biosystems, 90 (2007) 535-545.
    [37] Z.S.H. Chan, N. Kasabov, L. Collins, A two-stage methodology for gene regulatory network extraction from time-course gene expression data, Expert Systems with Applications, 30 (2006) 59-63.
    [38] L. Han, J. Zhu, Using matrix of thresholding partial correlation coefficients to infer regulatory network, Biosystems, 91 (2008) 158-165.
    [39] S. Aburatani, S. Saito, H. Toh, K. Horimoto, A graphical chain model for inferring regulatory system networks from gene expression profiles, Statistical Methodology, 3 (2006) 17-28.
    [40] J. Holland, Adaptation in natural and artificial systems, University of Michigan Press, 1975.
    [41] L. Li, T.A. Darden, C.R. Weingberg, A.J. Levine, L.G. Pedersen, Gene Assessment and Sample Classification for Gene Expression Data Using a Genetic Algorithm / k-nearest Neighbor Method, Combinatorial Chemistry & High Throughput Screening, 4 (2001) 727-739.
    [42] D. Liu, T. Shi, J.A. DiDonato, J.D. Carpten, J. Zhu, Z.-H. Duan, Application of genetic algorithm/k-nearest neighbor method to the classification of renal cell carcinoma, in: Computational Systems Bioinformatics Conference, 2004. CSB 2004. Proceedings. 2004 IEEE, 2004, pp. 558-559.
    [43] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Neural Networks, 1995. Proceedings., IEEE International Conference on, 1995, pp. 1942-1948 vol.1944.
    [44] M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space, Evolutionary Computation, IEEE Transactions on, 6 (2002) 58-73.
    [45] Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, 1998, pp. 69-73.
    [46] R. Bellman, R. Kalaba, On adaptive control processes, Automatic Control, IRE Transactions on, 4 (1959) 1-9.
    [47] C. Myers, L. Rabiner, A. Rosenberg, Performance tradeoffs in dynamic time warping algorithms for isolated word recognition, Acoustics, Speech and Signal Processing, IEEE Transactions on, 28 (1980) 623-635.
    [48] R. Jayadevan, R.K. Satish, M.P. Pradeep, Dynamic Time Warping Based Static Hand Printed Signature Verification, Journal of Pattern Recognition Research, 4 (2009) 52-65.
    [49] D.J. Burr, Designing a Handwriting Reader, Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-5 (1983) 554-559.
    [50] B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the fifth annual workshop on Computational learning theory, ACM, Pittsburgh, Pennsylvania, United States, 1992, pp. 144-152.
    [51] C.J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Min. Knowl. Discov., 2 (1998) 121-167.
    [52] E. Fix, J.L. Hodges, Discriminatory Analysis: Nonparametric Discrimination: Consistency Properties, in, 1951, pp. 261-279.
    [53] M.L. Raymer, W.F. Punch, E.D. Goodman, P.C. Sanschagrin, L.A. Kuhn, Simultaneous Feature Extraction and Selection using a Masking Genetic Algorithm in: In Proceedings of the 7 th International Conference on Genetic Algorithms 1997, pp. 561 - 567.
    [54] W.D. Wayne, Applied nonparametric statistics, PWS-KENT Publishing Company, Boston, 1990.
    [55] U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, A.J. Levine, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proceedings of the National Academy of Sciences of the United States of America, 96 (1999) 6745-6750.
    [56] J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C.R. Antonescu, C. Peterson, P.S. Meltzer, Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nat Med, 7 (2001) 673-679.
    [57] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, E.S. Lander, Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, 286 (1999) 531-537.
    [58] A.A. Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, A. Rosenwald, J.C. Boldrick, H. Sabet, T. Tran, X. Yu, J.I. Powell, L. Yang, G.E. Marti, T. Moore, J. Hudson, L. Lu, D.B. Lewis, R. Tibshirani, G. Sherlock, W.C. Chan, T.C. Greiner, D.D. Weisenburger, J.O. Armitage, R. Warnke, R. Levy, W. Wilson, M.R. Grever, J.C. Byrd, D. Botstein, P.O. Brown, L.M. Staudt, Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, 403 (2000) 503-511.
    [59] S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C.-H. Yeang, M. Angelo, C. Ladd, M. Reich, E. Latulippe, J.P. Mesirov, T. Poggio, W. Gerald, M. Loda, E.S. Lander, T.R. Golub, Multiclass cancer diagnosis using tumor gene expression signatures, Proceedings of the National Academy of Sciences of the United States of America, 98 (2001) 15149-15154.
    [60] J.-U. Thanyaluk, A. Stuart, Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes, BMC Bioinformatics, 6 (2005) 148.
    [61] F. Tan, X. Fu, Y. Zhang, A.G. Bourgeois, Improving Feature Subset Selection Using a Genetic Algorithm for Microarray Gene Expression Data, in: Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, 2006, pp. 2529-2534.
    [62] S. Dudoit, J. Fridlyand, T. Speed, Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data, Journal of the American Statistical Association, 97 (2002) 77-87.
    [63] H. de Jong, Modeling and Simulation of Genetic Regulatory Systems: A Literature Review, Journal of Computational Biology, 9 (2002) 67-103.
    [64] L. Yao, W.A. Sethares, Nonlinear parameter estimation via the genetic algorithm, Signal Processing, IEEE Transactions on, 42 (1994) 927-935.
    [65] C.C. Chang, C.J. Lin, LIBSVM: a library for Support Vector Machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm, in.
    [66] L. Li, C.R. Weinberg, T.A. Darden, L.G. Pedersen, Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method, Bioinformatics, 17 (2001) 1131-1142.
    [67] K. Deb, A. Raji Reddy, Reliable classification of two-class cancer data using evolutionary algorithms, Biosystems, 72 (2003) 111-129.
    [68] Y. Wang, F.S. Makedon, J.C. Ford, J. Pearlman, HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data, Bioinformatics, 21 (2005) 1530-1537.
    [69] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene Selection for Cancer Classification using Support Vector Machines, Machine Learning, 46 (2002) 389-422.
    [70] T.K. Paul, H. Iba, Selection of the most useful subset of genes for gene expression-based classification, in: Proceedings of the 2004 congress on evolutionary computation, 2004, pp. 2076-2083 Vol.2072.
    [71] J.M. Deutsch, Evolutionary algorithms for finding optimal gene sets in microarray prediction, Bioinformatics, 19 (2003) 45-52.
    [72] Y. Lee, C.-K. Lee, Classification of multiple cancer types by multicategory support vector machines using gene expression data, Bioinformatics, 19 (2003) 1132-1139.
    [73] R. Tibshirani, T. Hastie, B. Narasimhan, G. Chu, Diagnosis of multiple cancer types by shrunken centroids of gene expression, Proceedings of the National Academy of Sciences of the United States of America, 99 (2002) 6567-6572.
    [74] J.-H. Cho, D. Lee, J.H. Park, I.-B. Lee, New gene selection method for classification of cancer subtypes considering within-class variation, FEBS Letters, 551 (2003) 3-7.
    [75] K.E. Lee, N. Sha, E.R. Dougherty, M. Vannucci, B.K. Mallick, Gene selection: a Bayesian variable selection approach, Bioinformatics, 19 (2003) 90-97.
    [76] L. Li, W. Jiang, X. Li, K.L. Moser, Z. Guo, L. Du, Q. Wang, E.J. Topol, Q. Wang, S. Rao, A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset, Genomics, 85 (2005) 16-23.
    [77] A.C. Tan, D.Q. Naiman, L. Xu, R.L. Winslow, D. Geman, Simple decision rules for classifying human cancers from gene expression profiles, Bioinformatics, 21 (2005) 3896-3904.
    [78] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, B. Futcher, Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization, Mol. Biol. Cell, 9 (1998) 3273-3297.
    [79] B. Futcher, Transcriptional regulatory networks and the yeast cell cycle, Current Opinion in Cell Biology, 14 (2002) 676-683.

    QR CODE