簡易檢索 / 詳目顯示

研究生: 張學謙
Hsueh-Chieh Chang
論文名稱: 合成CuInS2奈米材料應用太陽能電池
Synthesis of CuInS2 nanocrystals and Quantum dots apply to Solar Cell
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 曾堯宣
Yao-Hsuan Tseng
曾新華
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 104
中文關鍵詞: 異質結構背電極連續式離子層吸附與反應法敏化太陽能電池共敏化
外文關鍵詞: heterostructure, counter electrode, SILAR, sensitized solar cell, co-sensitization
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在染料敏化太陽能中(Dye-Sensitized Solar Cell, DSSC),為取代廣泛使用而又昂貴的鉑(Pt)背電極,本研究利用合成出的I-III-VI族Cu2S-CuInS2(Cu-CIS)異質結構材料,將其應用於背電極上,並封裝 Cu-CIS背電極之DSSC後加以量測。同時針對最佳化之Cu-CIS 背電極與Pt背電極做電化學儀器之量測與分析,進一步了解其動力學行為。在量子點敏化太陽能電池(Quantum Dots Sensitized Solar Cells, QDSSC)中,利用相同製程合成I-III-VI族之量子點(Quantum dots) CuInS2 (In-CIS),將預先合成的In-CIS量子點沉積於光電極上的二氧化鈦,再以連續式離子層吸附與反應(Successive Ionic Layer Adsorption and Reaction, SILAR)法將量子點沉積於TiO2上,並與Cu-CIS及Pt背電極材料封裝,以作為探討光電轉換效能分析之依據。再藉由能隙觀點,以討論兩種不同型式所結合而成的量子點共敏化效應,有利於電子之躍遷傳導。此外,由於共敏化效應,相較於僅以SILAR或熱合成沉積於二氧化鈦上,其IPCE的吸收波長來得更寬,轉換效能更高。而利用太陽能模擬所量測的光電轉換效率,In-CIS/CdS量子點之組成可達2.37%,明顯優於以其他類型量子點共敏化。從結果顯示,相較於Pt背電極,Cu-CIS具備高催化性,兼且低成本之優勢,因此,存在有實用的經濟效益。


    In This study, we synthesized the I-III-VI group Cu2S-CuInS2 (Cu-CIS) heterostructure as candidate to replace the expensive platinum (Pt) counter electrode that has been commonly applied. DSSC analysis then implemented to characterize as-prepared Cu-CIS, while electrochemical analysis was employed to understand dynamic behavior of Cu-CIS and Pt counter electrode. In other part, we using the same process to Indium-rich CuInS2 (In-CIS) quantum dots (Quantum dots) and further deposited on photoelectrode of titanium dioxide (TiO2) and SILAR (Successive Ionic Layer Adsorption and Reaction), respectively. By designing this QDSSC (Quantum Dots Sensitized Solar Cells), we improve comparing Cu-CIS and Pt along with observes the effect on combining two types of quantum dot sensitization through energy level perspective. Furthermore, as-prepared hot synthesis SILAR deposited on the titanium dioxide also investigated Incident Photon to Current Conversion Efficiency (IPCE) where perform wider absorption wavelength and higher conversion efficiency than commonly counter electrode. In QDSSC, the photoelectric conversion efficiency is 2.37% of In-CIS/CdS QDs, which is better than other types of quantum dots results of co-sensitization significantly. The resulted Cu-CIS can perform better catalytic activity than conventional Pt counter electrode as well as low cost requirement. The resulted data could claim the practical benefit on using Cu-CIS as counter electrode.

    總目錄 摘要 Abstract 第一章 1.1 前言 1.2 太陽能電池之發展概況 1.2.1 矽晶型太陽能電池 1.2.2 薄膜型太陽能電池 1.2.3 染料敏化太陽能電池 1.3 研究動機 第二章 文獻回顧 2.1 染料敏化太陽能電池(Dye Sensitized Solar cell) 2.1.1 染料敏化太陽能電池之發展 2.1.2 染料敏化太陽能電池之工作原理 2.1.3 DSSC組構元件 2.2 量子點敏化太陽能(Quantum Dots of Sensitized Solar cell , QDSSC) 2.2.1 QDSSC之起源 2.2.2 半導體奈米材料量子點 2.2.3 量子點之特性 2.2.4 QDSSC工作原理 2.2.5 量子點敏化劑之製備 第三章 實驗技術與原理 3.2 實驗儀器及原理 3.3 實驗步驟 3.3.1 FTO以及ITO之表面清潔 3.3.2 二氧化鈦薄膜之光電極製備 3.3.3 CIS銅銦比例為1:3之量子點製備方式 3.3.4 預合成量子點吸附於光電極之處理 3.3.5 SILAR沉積量子點法 3.3.6 鈍化層(Passivation layer) 3.3.7 奈米異質結構的合成與背電極之製備 3.3.8 電解液之製備 3.3.9 太陽能電池之元件封裝 第四章 儀器分析與原理 4.1 穿透式電子顯微鏡 (TEM) 4.2 紫外光/可見光光譜儀 (UV-vis)Band gap、吸收峰 4.3 光激發螢光分析儀 (PL)放光波長 4.4 螢光量子產率(%) 4.5 X光繞射分析儀 (XRD) 4.6 X射線光電子能譜儀 (XPS) 4.7 掃描探針顯微鏡 (SPM) 4.8 感應耦合電漿發射光譜儀(inductively couple plasma mass spectrometry, ICP-MS) 4.9 電化學阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 4.9.1 電化學阻抗原理 4.9.2 等效電路原理 4.10 Tafel極化曲線 4.10.1 極化現象 4.10.2 Tafel原理 4.11光電轉換效率分析 第五章 實驗結果與討論 5.1 Cu-CIS異質結構之合成與分析 5.2 背電極材料之電化學分析 5.2.1 電化學阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 5.2.2 Tafel量測分析 5.3 量子點之材料量測分析 5.3.1 In-CIS量子點之合成分析 5.3.2 In-CIS量子點之組成與結構分析 5.4 DSSC之元件分析 5.4.1. .Cu-CIS之效率分析 5.4.2 DSSC背電極之分析 5.5 QDSSC之元件分析 5.5.1 QDSSC光電轉換效率之分析 5.5.2 QDSSC IPCE之分析 第六章 結論與未來展望 第七章 參考文獻

    [1] B. O'Regan, M. Gratzel, Nature, 1991, 353(6346), 737.
    [2] M. K. Nazeeruddin, A. Kay, I. , R. Rodicio, E. Humphry-Baker, P. Mueller,N. Liska,M. Vlachopoulos, J. Am. Gratzel, Chem.Soc., 1993, 115(14), 6382.
    [3] M. K. Nazeeruddin, P. Pecy, T. Reouard, S. M. Zakkeeruddin, A. Kay, P. Comte, R. Humphry-Baker, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Gratzel, J. Am. Chem. Soc., 2001, 123, 1613.
    [4] Gerrit Boschloo And Anders HagfeldtA, Department of Physical and Analytical Chemistry, Uppsala University, Box 259, 75105 Uppsala, Sweden.
    [5] S. Ferrere, A. Zaban, B. A. Gregg, J. Phys. Chem. B, 1997, 101, 4490.
    [6] K. Keis, L. Vayssiers, S. E. Linfquist, A. Hagfeldt, Nanostruct. Mater. 1999, 12, 487.
    [7] M. Y. Zayat, A. O. Saed, M. S. Dessouki, Int., J. Hydrogen Energy 1998, 23, 259.
    [8] D. R. Coronado, G. R. Gattorno, M. E. E. Pesqueira, C. Cab, R. D. Coss and G Oskam, Nanotechnology, 2008, 19, 145605.
    [9] M.Gratzel,Nature,2001,414,338.
    [10] Greijer, R. Agrell, J. Lindgren, A. Hagfeldt, Photochem. Photobiol.A, 2004, 164, 23.
    [11] M. Gratzel, Inorg. Chem. 2005, 44, 6841
    [12] A. Hagfeldt, M. Gratzel, Acc. Chem. Res., 2000, 33, 269.
    [13] C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen, K. C. Ho, Angew.Chem.Int, Ed., 2006, 45, 5822.
    [14] G. Smestad, C. Bignozzi, R. Argazzi, Sol. Energy Mater. Sol. Cells 1994, 32, 259.
    [15] F. O. Lenzmann and J. M. Kroon, Advances in OptoElectronics, 2007, 65073, 10.
    [16] A. Kaniyoor, S. Ramaprabhu, Electrochimica Acta, 2012, 72, 199.
    [17] L. Y. Chang, C. P. Lee, K.C. Huang, Y. C. Wang, M. H. Yeh, J. J. Lin and K. C. Ho, J. Mater. Chem., 2012, 22, 3185.
    [18] C. Y. Liua, K.C. Huanga, C.C. Wanga and K.C. Hoa, Chem. Commun., 2011, 47, 11528.
    [19] V. Tjoa, J. Chua, S.S. Pramana, J. Wei, S. G. Mhaisalkar and N. Mathews, ACS Appl. Mater. Interfaces 2012, 4, 3447.
    [20] V. D. Dao, S. H. Kim, H. S. Choi, J. H. Kim, H. O. Park and J. K. Lee, J. Phys. Chem. C, 2011, 115, 25529.
    [21] M. X. Wu, Y. D. Wang, X. Lin, N. Yu, L. Wang, L. L. Wang, A. Hagfeldt and T. L. Ma, Phys. Chem. Chem. Phys., 2011, 13,19298.
    [22] M. X. Wu, X. Lin, Y. D. Wang, L. Wang, W. Guo, D. D. Qi, X. J. Peng, A. Hagfeldt, M. Gratzel and T. L. Ma, J. Am. Chem.Soc., 2012, 134, 3419.
    [23] L. Wang, M. X. Wu, Y. R. Gao and T. L. Ma, Appl. Phys. Lett., 2011, 98, 221102.
    [24] L. Wang, E. W. G. Diau, M. X. Wu, H. P. Lu and T. L. Ma, Chem.Commun., 2012, 48, 2600.
    [25] W. Shockley and H. J. Queisser, J. Appl. Phys., 1961, 32, 510.
    [26] A. L. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmuller, H. Weller, Ber. Bunsen Phys. Chem., 1996, 100, 1772.
    [27] A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmuller, Y. P. Rakovich, J. F. Donegan, J. Phys. Chem. C 2007, 111, 14628.
    [28] T. Takagahara , K. Takeda, Phys. Rev. B, 1992, 46, 15578.
    [29] S. Kan, T. Mokari, E. Rothenberg, U. Banin, Nat. Mater. 2003, 2, 155.
    [30] R. D. Schaller and V. I. Klimov, Phys. Rev. Lett., 2004, 92, 186601.
    [31] M. C. Hanna and A. J. Nozik, J. Appl. Phys., 2006, 100, 74510.
    [32] H.T. Chang , Z. Yang, C. Y. Chen, P. Roy, Chem. Commun., 2011, 47, 9561.
    [33] A. J. Nozik, Physica E 2002, 14, 115.
    [34] A. J. Nozik, Inorg. Chem., 2005,44, 6893.
    [35] H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci., 2004, 27, 85.
    [36] A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, Langmuir 1998, 14, 3153.
    [37] S. Gimenez, M. SeroI, L. Macor, N. Guijarro,V. T. Lana, G. R. Mez, L. J. Diguna, Q. Shen, T. Toyoda, J. Bisquert, Nanotechnology, 2009,20, 295204.
    [38] N.Guijarro, V. T. Lana, I. Sero, J. Bisquert, R. Go’mez, Journal of Physical Chemistry C, 2009,113,4208.
    [39] J. R. Mann, D. F. Watson, Langmuir, 2007, 23, 10924.
    [40] D. Pernik, K. Tvrdy, J. G. Radich,P. V. Kamat, J. Phys.Chem. C, 2011, 115, 13511.
    [41] J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H.Huang, R. S. Liu, Appl. Phys. Lett., 2009, 94, 153115.
    [42] N. Guijarro, Q. Shen, S. Giménez, I. M. Seró, J. Bisquert, V. T. Lana., T. Toyoda, R. Gómez, J. Phys. Chem. C, 2010, 114, 22352.
    [43] J. Nevins, K. M. Coughlin, D. F. Watson, ACS Appl. Mater. Interfaces, 2011, 3, 4242.
    [44] I. Seró, I. Giménez, S. Moehl, T. F. Santiago, V. T. Lana, R. Gómez, J. Bisquert, Nanotechnology, 2008, 19, 424007.
    [45] T. M. Johannes, R. Andrés, V. Sgobba, D. M. Guldi and Timothy Clark, Langmuir, 2013, 29, 2434.
    [46] J. Shen, J. Kobayashi, L. J. Diguna and T. Toyoda, J. Appl. Phys., 2008, 103, 84304.
    [47] Y. L. Lee and Y. S. Lo, Adv. Funct. Mater., 2009, 19, 604.
    [48] Z. Yang, C. Y. Chen, C. W. Liu and H. T. Chang, Chem.Commun., 2010, 46, 5485.
    [49] W. Lee, S. H. Kang, S. K. Min, Y.-E. Sung and S. H. Han, Electrochem. Commun., 2008, 10, 1579.
    [50] Z. Yang and H. T. Chang, Sol. Energy Mater. Sol. Cells, 2010, 94, 2046.
    [51] S.Cheng, W.Fu, H. Yang, L. Zhang, J. Ma, H. Zhao, M. Sun and L. Yang, J, Phys. Chem. C, 2012, 116, 2615.
    [52] J. W. Lee, J. D. Hong and N. G. Park Chem. Commun., 2013, 49, 6448.
    [53] X. Xu,Q. Wan, C. Luan, F. Mei, Q. Zhao, P. An, Z. Liang, G. Xu and J. A. Zapien, ACS Appl. Mater. Interface, 2013, 13, 10605.
    [54] R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin and G. Cao, J , Phys. Chem. C, 2013, 117, 26948.
    [55] J. Luo, H. Wei, Q.Huang, X. Hu, H. Zhao,R. Yu,D. Li, Y. Luo and Q. Meng, Chem. Commun., 2013, 49, 3881.
    [56] Y. Q. Wang,Y. C. Rui, Q.H. Zhang, Y. G. Li and H. Z. Wang , ACS Appl. Mater. Interfaces 2013, 5, 11858.
    [57] D. Ogermann, T. Wilke, K. Kleinermanns. Open Journal of Physical Chemistry, 2012, 2, 47.
    [58] M. Samadpour,A. Irajizad, N. Taghavinia, M. Molaei, Journal of Physics D Applied Physics, 2011, 44, 45103.
    [59] H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddi , M. Gratzel, M. K. Nazeeruddin, Nano Letters, 2009, 9, 4221.
    [60] H. J. Lee, D. W. Chang, S. M. Park, S. M. Zakeeruddin, M. Gratzel, M. K. Nazeeruddin Chemical Communications, 2010, 46, 8788.
    [61] H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, M. I. Seok, M. Gratzel, M. K. Nazeeruddin, Journal of Physical Chemistry C, 2008, 112, 11600.
    [62] H. J. Lee, P. Chen, S. J. Moon, S. Frederic, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, M. I. Seok, M. Gratzel , M. K. Nazeeruddin, Langmuir, 2009, 25, 7602.
    [63] N. Guijarro, V. T. Lana, Q. Shen, T. Toyoda, R. Gomez, Journal of Physical Chemistry C, 2010, 114, 21928.
    [64] Y. L. Lee, C. H. Chang, Journal of Power Sources, 2008, 185, 584.
    [65] S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori and C. A. Bignozzi, J. Am. Chem. Soc., 2002, 124, 11215.
    [66] G. Hodes, J. Phys. Chem. Lett, 2012, 3, 1208.
    [67] I. Hod, Z. Tachan, M. Shalom, J. Zaban, Phys.Chem. Lett., 2011, 2, 1032.
    [68] http://www.aandb.com.tw/Page0004/uv_vis_04_lambda_25.html.
    [69] 謝嘉民,賴一凡,林永昌,枋志堯,奈米通訊,第十二卷第二期,28。
    [70] Bruker公司SPM儀器說明書。
    [71] A. L. Gray, G. J. Williams, J. Anal.Atom. Spectrom., 1987,2 599.
    [72] M. A. Vaughan, G. Horlick, Appl. Spectrom., 1986, 40, 434.
    [73] M. X. Wu, X. Lin, A. Hagfeldt, T. L. Ma, Chem. Commun. 2011, 47, 4535.
    [74] M. Kruszyska, H. Borchert, J. R. Parisi and J. K. Olesiak, J. Am. Chem. Soc., 2010,132,15976.
    [75] C. Ho, I. D. Raistrick, J. Electrochem. Soc., 127, 343.
    [76] M. X. Wu, X. Lin, A. Hagfeldt, T. L. Ma, Chem. Commun. 2011, 47, 11489.
    [77] A. Hauch, A. Georg, Electrochim. Acta, 2001, 46, 3457.
    [78] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochim. Acta, 2002, 47, 4213.
    [79] Q. Wang, J. E. Moser, M. Gratzel, J. Phys. Chem. B, 2005, 109, 14945.
    [80] J. R. Macdonald, Impedance Spectroscopy, Wiley, New York, 1987.
    [81] Q. W. Jiang, G. R. Li and X. P. Gao, Chem. Commum., 2009, 6720.

    無法下載圖示 全文公開日期 2019/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE