簡易檢索 / 詳目顯示

研究生: 吳斌龍
Bin-Long Wu
論文名稱: I-II-III-VI族量子點敏化太陽能電池合成與鑑定
Synthesis of I-II-III-VI Group Quantum dots-Sensitized Solar Cell
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 曾堯宣
Yao-Hsuan Tseng
曾新華
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 量子點敏化太陽能電池連續離子層吸附反應法
外文關鍵詞: QDSSC, SILAR
相關次數: 點閱:257下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用預先合成法(Pre-synthesis)合成出Zn-CuInS2 (Z-CIS)與Cd-CuInS2 (Cd-CIS)四元量子點,透過改變前驅物比例,探討量子點材料特性與光電性質。利用其量子點作為量子點敏化太陽能電池(QDSSC)的光敏化劑,並使用寬能隙ZnS作為鈍化層,防止量子點及TiO2直接接觸到電解液造成暗電流產生。最後光電極與高比表面積之Cu2S背電極結合形成三明治結構之電池元件,在Cd-CIS QDSSC可獲得1.70%的光電轉換效率。為了更進一步提升效率,我們結合連續離子層吸附反應法(Successive Ionic Layer Adsorption and Reaction, SILAR)沉積CdS與CdSe量子點於光電極上,比較Cd-CIS/CdS(3)與Cd-CIS/CdSe(4)兩電極,發現後者有較佳的光電轉換效率,主要是因為CdSe有較寬的吸收範圍透過IPCE的測量,其起始吸光波長為670 nm,IPCE值在485 nm處有最大值為65%。最適化的電池結構為Cd-CIS/CdSe(4)/ZnS(3)||Cu2S,其電流密度Jsc為9.73 mA cm-2;開路電壓Voc為0.555 V;填充因子FF為53.0%,整體光電轉換效率高達2.86%。


    In this study, we demonstrated synthesis of Zn-CuInS2 (Z-CIS) and Cd-CuInS2 (Cd-CIS) quantum dots (QDs) through pre-synthesis method. Motivated on providing QDs as excellent sensitizer for quantum dot-sensitized solar cells (QDSSC), the effect of precursor on the optical and electrical properties of quantum dots was regularly investigated. In the synthesis process, the zinc sulfide (ZnS) was further deposited on a photo-electrode as a passivation layer to prevent the current leakage on QDs, while electrolyte and counter electrode (Cu2S) are used to form sandwich structure of QDSSC. The power conversion efficiency (PCE) of Cd-CIS-based QDSSC was 1.70%. To improve the efficiency value, we subsequently combined CdS or CdSe as the co-sensitization. The photocurrent response from incident light was evaluated by Incident Photon to Current Conversion Efficiency (IPCE), with photocurrent onsets at 640 nm for the Cd-CIS/CdS and 670 nm for Cd-CIS/CdSe-based solar cells. The best device was performed by the Cd-CIS/CdSe(4)/ZnS(3) configuration where showed Jsc, Voc, FF, and values up to 9.73 mA cm-2, 0.555 V, 53.0%, and 2.86%, respectively.

    摘要 i Abstract ii 總目錄 iii 表目錄 v 圖目錄 vi 第一章、序論 1 1.1 前言 1 1.2 研究動機與內容 2 第二章、理論背景與文獻回顧 3 2.1 奈米材料─基本性質 3 2.2.1表面效應 3 2.2.2小尺寸效應 4 2.2.3 量子尺寸效應 5 2.2 染料敏化太陽能電池 6 2.2.1 起源與發展 6 2.2.2工作原理 7 2.2.3元件介紹 9 2.3 量子點應用於敏化太陽能電池 13 2.3.1 量子點特性 14 2.3.2 量子點敏化太陽能電池發展 17 2.3.3 量子點製備 20 2.3.4分離與純化 26 第三章、實驗 30 3.1 實驗架構 30 3.2 實驗藥品 31 3.3實驗步驟 34 3.3.1 導電玻璃基板清洗 34 3.3.2 二氧化鈦光電極薄膜製備 34 3.3.3 量子點合成 35 3.3.4 量子點吸附 36 3.3.5 共敏化劑沉積 37 3.3.6 鈍化層沉積 38 3.3.7 背電極製作 39 3.3.8 電解液配置 39 3.3.9dQDSSC元件組裝 39 3.4 實驗儀器與設備 41 3.5 樣品分析 43 第四章、結果與討論 50 4.1 量子點材料分析 50 4.1.1 CuInS2量子點分析 50 4.1.2 Zn-CuInS2與Cd-CuInS2量子點分析 53 4.2 –QDSSC組件分析 63 4.3 –QDSSC效率分析 65 4.3.1 量子點前驅物比例對電池元件之影響 65 4.3.2 共敏化效應對電池元件之影響 68 第五章、結論 73 參考文獻 74

    1. International Energy Outlook 2010, EIA, 2010
    2. Annual Energy 2013, EIA, 2013
    3. 產業調查部, 我國太陽能業者市場地位概況分析, 2012
    4. 謝志強, 2013新興能源產業年鑑, 2013
    5. 李雯雯, 王孟傑, The potential analysis of thin film solar cell techonology development, 工研院產經中心, 2007
    6. 經濟部技術處, 2013產業技術白皮書, 經濟部技術處, 2013
    7. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402
    8. B. O’Regan and M. Gratzel, Nature, 1991, 353, 737
    9. 李思毅, 李佳穎, 曾俊元, 物理雙月刊, 2004, 26, 473
    10. 馬遠榮, 科學發展, 2004, 382, 72
    11. J. C. kim, H. Rho, L. M. Smith, H. E. Jackson, S. Lee, M. Dobrowolska, J. L. Merz and J. K. Furdyna, Appl. Phys. Lett., 1998, 73, 3399
    12. A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, Science, 1992, 256, 1425
    13. V. I. Klimov, Nanocrystal quantum dots 2nd ed., Taylor & Francis , 2010
    14. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402
    15. B. O’Regan and M. Gratzel, Nature, 1991, 353, 737
    16. M. Gratzel, J. Photochem. Photobiol., A, 2004, 164, 3
    17. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gratzel, J. Am. Chem. Soc., 2005, 127, 16835
    18. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel, Science, 2011, 334, 629
    19. S. Mathew , A. Yella, P. Gao, H. B. Robin, B. F. E. Curchod, A. A. Negar, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Gratzel, Nature Chem., 2014, 6, 242
    20. F. T. Kong, S. Y. Dai and K. J. Wang, Adv. Optoelectron., 2007, 1-13
    21. M. Gratzel, Inorg. Chem., 2005, 44 , 6841
    22. 孟慶波, 林原, 戴松元, 物理, 2004, 33, 177
    23. D. Ulrike, Surf. Sci. Rep., 2003, 48, 53.
    24. Y. Bai, I. Mora-Sero, F. D. Angelis, J. Bisquert and P. Wang, Chem. Rev., Article ASAP, 2014
    25. S. Gunes and N. S. Sariciftci, Inorg. Chim. Acta, 2008, 361, 581
    26. Md. K. Nazeeruddin, M. S. Zakerruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover and M. Gratzel, Inorg. Chem., 1999, 38, 6298
    27. Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel, J. Phys. Chem. B, 2003, 107, 8981
    28. Md. K. Nazeeruddin, P. Pechy, T. Renouard, M. S. Zakerruddin, R. Humphry-Baker, P. Comte, P. Liska, Le. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Gratzel, J. Am. Chem. Soc., 2001, 123, 1613
    29. A. Hagfeldt and M. Gratzel, Chem. Rev., 1995, 95, 49
    30. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, J. Am. Chem. Soc., 2005, 127, 3456
    31. P. Wang, S. M. Zakeeruddin, I. Exnar and M Gratzel, Chem. Commun., 2002, 2972
    32. M. Wang, N. Chamberland, L. Breau, J-E. Moser, R, Humphry-Baker, B. Marsan, S. M. Zakeeruddin and M. Gratzel, Nature Chem., 2010, 2, 385
    33. C. L. Chen, H. Teng and Y. L. Lee, Adv. Mater., 2011, 23, 4199
    34. M. Wang, A. M. Anghel, B. Marsan, N. L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc., 2009, 131, 15976
    35. Y. Liu, F. Huang, Y. Xie, H. Cui, W. Zhao, C. Yang and N. Dai, J. Phys. Chem. C, 2013, 117, 10296
    36. P. V. Kamat, J. Phys. Chem. Lett., 2013, 4, 908
    37. A. M. Smith and S. Nie, Analyst, 2004, 129, 672
    38. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Science, 2005, 307, 538
    39. S. Jana, B. B. Srivastava and N. Pradhan, J. Phys. Chem. Lett., 2011, 2, 1747
    40. N. Pradhan, D. Goorskey, J. Thessing and X. Peng, J. Am. Chem. Soc., 2005, 127, 17586
    41. B. B. Srivastava, S. Jana and N. Pradhan, J. Am. Chem. Soc., 2011, 133, 1007
    42. S. Jana, B. B. Srivastava, S. Acharya, P. K. Santra, N. R. Jana, D. D. Darma and N. Pradhan, Chem. Commun., 2010, 46, 2853
    43. J. H. Werner, S. Kolodinski and H. J. Queisser, Phys. Rev. Lett., 1994, 72, 3851
    44. A. J. Nozik, Annu. Rev. Phys. Chem.,2001, 52, 193
    45. A. J. Nozik, Inorg. Chem., 2005, 44, 6893
    46. A. Franceschetti, J. M. An and A. Zunger, Nano Lett., 2006, 6, 2191
    47. W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil and X. Y. Zhu, Science, 2010, 325, 1543
    48. A. J. Nozik, Physica E, 2002, 14, 115
    49. R. D. Schaller, M. A. Petruska and V. I. Klimov, Appl. Phys. Lett., 2005, 87, 253102
    50. R. D. Schaller and V. I. Klimov, Phys. Rev. Lett., 2004, 96, 186601
    51. S. Kolodinski, J. H. Werner, T. Wittchen and H. J. Queisser, Appl. Phys. Lett., 1993, 63, 2405
    52. R. Vogel, P. Hoyer and H. Weller, J. Phys. Chem., 1994, 98, 3183
    53. R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin and G Cao, J. Phys. Chem. C, 2013, 117, 26948
    54. X. Y. Yu, J. Y. Liao, K. Q. Qiu, D. B. Kuang and C. Y. Su, ACS Nano, 2011, 5, 9494
    55. P. V. Kamat, J. A. Christians and J. G. Radich, Langmuir, 2014, 30, 5716
    56. A. J. Nozik, Nano Lett., 2010, 10, 2735
    57. N. P. Benehkohal, V. G. Pedro, P. P. Boix, S. Chavhan, R. R. Zaera, G. P. Demopoulos and I. M. Sero, J. Phys. Chem. C, 2012, 116, 16391
    58. P. K. Santra, P. V. Nair, K. G. Thomas and P. V. Kamat, J. Phys. Chem. Lett., 2013, 4, 722
    59. J. Y. Chang, L. F. Su, C. H. Li, C. C. Chang and J. M. Lin, Chem. Commun., 2012, 48, 4848
    60. C. C. Chang, J. K. Chen, C. P. Chen, C. H. Yang and J. Y. Chang, ACS Appl. Mater. Interfaces, 2013, 5, 11296
    61. M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu and B. A. Korgel, J. Phys. Chem. Lett., 2013, 4, 2030
    62. J. Wang, I. M. Sero, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong and J. Bisquert, J. Am. Chem. Soc., 2013, 135, 15913
    63. Z. Pan, I. M. Sero, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong and J. Bisquert, J. Am. Chem. Soc., 2014, 136, 9203
    64. P. P. Boix, G. Larramona, A. Jacob, B. Delatouche, I. M. Sero and J. Bisquert, J. Phys. Chem. C, 2012, 116, 1579
    65. S. Ito, K. Tsujimoto, D. C. Nguyen, K. Manabe and H. Nishino, Int. J. Hydrogen Energy, 2013, 38, 16749
    66. Y. C. Choi, D. U. Lee, J. H. Noh, E. K. Kim and S. I. Seok, Adv. Funct. Mater., 2014, 24, 3587
    67. P. K. Santra and P. V. Kamat, J. Am. Chem. Soc., 2013, 135, 877
    68. M. Shalom, J. Albero, Z. Tachan, E. M. Ferrero, A. Zaban and E. Palomares, J. Phys. Chem. Lett., 2010, 1, 1134
    69. S.A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, J. Am. Chem. Soc., 2005, 127, 3456
    70. I. Hod, V. G. Pedro, Z. Tachan, F. F. Santiago, I. M. Sero, J. Bisquert and A. Zaban, J. Phys. Chem. Lett., 2011, 2, 3032
    71. J. Kim, H. Choi, C. Nahm, C. Kim, S. Nam, S. Kang, D. R. Jung, J. I. Kim, J. Kang and B. Park, J. Power Sources, 2012, 220, 108
    72. S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang and L. Jiang, J. Mater. Chem., 2002, 12, 1459
    73. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2006, 128, 2385
    74. Y. L. Lee, Y. J. Shen and Y. M. Yang, Nanotechnology, 2008, 19, 455201
    75. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian and E. H. Sargent, Nat. Nanotechnol., 2012, 7, 577
    76. X. Huang, S. Huang, Q. Zhang, X. Guo, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, Chem. Commun., 2011, 47, 2664
    77. G. Zhu, L. Pan, T. Xu and Z. Sun, J. Electroanal. Chem., 2011, 659, 205
    78. D. A. Hines and P. V. Kamat, J. Phys. Chem. C, 2013, 117, 14418
    79. H. J. Yun, T. Paik, M. E. Edley, J. B. Baxter and C. B. Murray, ACS Appl. Mater. Interfaces, 2014, 6, 3721
    80. A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban and U. Banin, ACS Nano, 2010, 4, 5962
    81. A. C. Poulose, S Veeranarayanan, S. H. Varghese, Y. Yoshida, T. Maekawa and D. S. Kumar, Chem. Phys. Lett., 2012, 540, 197
    82. B. Kowalczyk, I. Lagzi and B. A. Grzybowski, Curr. Opin. Colloid Interface Sci., 2011, 16, 135
    83. D. Fletcher, IEEE Trans. Magn., 1991, 27, 33655
    84. F. K. Liu and G. T. Wei, Chromatographia, 2004, 59, 115
    85. G.T. Wei, F. K. Liu and C. R. Wang, Anal. Chem., 1999, 71, 2085
    86. S. F. Sweeney, G. H. Woehrle and J. E. Hutchison, J. Am. Soc., 2006, 128, 3190
    87. O. M. Wilson, R. W. J. Scott, J. C. G. Martinez and R. M. Crooks, Chem. Mater., 2004, 16, 4202
    88. J. F. Liu, R. Liu, Y. Q. Yin, and G. B. Jiang, Chem. Commun., 2009, 1514
    89. M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, H. J. Maefa, J. Chem. Phys., 2008, 129, 134709
    90. X. Tang, W. Cheng, E. S. G. Choo and J. Xue, Chem. Commun., 2011, 47, 5217
    91. W. D. Xiang, H. L. Yang, X. J. Liang, J. S. Zhong, J. Wang, L. Luo and C. P. Xie, J. Mater. Chem. C, 2013, 1, 2014
    92. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2008, 130, 4007
    93. Y. L. Lee and Y. S. Lo, Adv. Funct. Mater., 2009, 19, 604
    94. J. Y. Chang, J. M. Lin, L. F. Su and C. F. Chang, ACS Appl. Mater. Interfaces, 2013, 5, 8740

    無法下載圖示 全文公開日期 2019/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE