簡易檢索 / 詳目顯示

研究生: 張嘉展
Chia-Chan Chang
論文名稱: CuInS2環保型量子點敏化太陽能電池
Environmental-friendly CuInS2 Quantum dots-Sensitized Solar Cell
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 江志強
Jyh-Chiang Jiang
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 95
中文關鍵詞: 量子點敏化太陽能電池
外文關鍵詞: Cu2S
相關次數: 點閱:219下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在環保意識的抬頭下,綠能科技成為現今各企業的開發重點,以及許多研究學者的研究重心。量子點敏化太陽能電池 (Quantum Dots Sensitized Solar Cells, QDSSC) 由於理論效率高,更是目前當紅的議題。然而目前文獻上所發表的QDSSC普遍使用鎘元素 (Cd) 以及鉛元素 (Pb) 的光敏化物,容易對我們的身體以及自然環境造成負面的影響,並非真正的綠能科技。因此在本研究中,選擇以低毒性的CuInS2量子點作為光敏化物,利用Oleic acid以及3-mercaptopropionic acid改質量子點的疏水性,獲得高穩定度的水溶性CuInS2量子點,此時組裝成CuInS2 QDSSC可獲得0.64%的光電轉換效率,相較於目前文獻上預先合成方法組裝的CuInS2 QDSSC,具有倍數的成長。接著再透過結合連續離子層吸附反應法 (Successive ionic-layer adsorption and reaction) 沉積CuInS2量子點於TiO2光電極上,增加光敏物的吸附量,並且達到共敏化的效果。另一方面,我們以簡易的製程即可獲得高表面積的Cu2S背電極,最後所封裝完成的CuInS2 QDSSC光電轉換效率可達1.84%的最佳效率。


    A cadmium metal-free CuInS2 quantum dot (QD)-sensitized solar cell (QDSSC) has been fabricated by taking advantages of the ex-situ synthesized approach with high crystalline of QDs and in-situ successive ionic-layer adsorption and reaction process (SILAR) approach with high surface coverage of QDs. The ex-situ synthesized CuInS2 QDs can be rendered water-soluble through simplicity and rapidity two-step method under the assistance of ultrasonication. This approach allows a stepwise ligand change from the foreign ligand insertion to ligand replacement, which preserves long-term stability of colloidal solution more than one month. Furthermore, the resulting QDs can be exploited as sensitizer in QDSSC delivered a power conversion efficiency (PCE) of 0.64%. Following by using the SILAR process, the in-situ CuInS2 could be epitaxial growing on the pre-existing seeds of ex-situ synthesized CuInS2 QDs. The results indicated that the CuInS2 QDSSC fabricated by the combined ex-situ/in-situ growth exhibited PCE of 1.84% (Jsc = 7.72 mA/cm2, Voc = 570 mV, and FF = 41.8%), which is higher than those of CuInS2 QDSSC formed by ex-situ and in-situ growth, respectively. The photon-to-current conversion efficiency and electrochemical impedance spectroscopy have been carried out to substantiate photovoltaic behavior and the charge-transfer resistance. The results suggest that the combined synergetic effects of in-situ and ex-situ CuInS2 QD growth facilitating higher electron-injecting efficiency from the QD sensitizers into the TiO2.

    摘要 I Abstract II 總目錄 IV 表目錄 VI 圖目錄 VII 第一章 序論 1 1.1 前言 1 1.2 研究動機與內容 2 第二章 文獻回顧及理論背景 3 2.1 染料敏化太陽能電池 3 2.1.1 起源及發展 3 2.1.2 工作原理 5 2.1.3 太陽能電池效率分析 6 2.2 半導體奈米材料與量子點的特性 9 2.2.1 量子侷限效應 11 2.2.2 衝擊離子化效應與歐傑再結合 13 2.2.3 迷你傳導帶 14 2.3 量子點敏化太陽能電池 15 2.3.1 QDSSC起源及發展 15 2.3.2 工作原理 17 2.3.3 組件簡介 18 2.3.4 量子點製備與沉積 21 第三章 實驗 30 3.1 實驗架構 30 3.3 實驗步驟 33 3.3.1 FTO玻璃基板清洗 33 3.3.2 二氧化鈦光電極薄膜製備 33 3.3.3 CuInS2量子點的合成 35 3.3.4 CuInS2量子點的改質 35 3.3.5 量子點的沉積 36 3.3.6 Cu2S背電極的製備 36 3.3.7 電解液的製備 36 3.3.8 QDSSC的組裝 37 3.4 實驗儀器 38 3.5 樣品分析 40 第四章 實驗結果與討論 45 4.1 CuInS2量子點材料分析 45 4.2 CuInS2量子點表面改質與功能化 49 4.3 QDSSC組件表面分析 61 4.4 QDSSC效率分析 66 4.4.1 量子點表面配位基對效率的影響 66 4.4.2 共敏化效應對QDSSC的貢獻 68 4.4.3 Cu2S背電極對QDSSC的影響 72 4.4.4 硫化鋅在QDSSC光電極上的應用 73 4.4.5 熱處理在QDSSC光電極上之應用 75 第五章 結論 78 參考文獻 79

    1. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402
    2. B. O’Regan and M. Gratzel, Nature, 1991, 353, 737
    3. L. Andrade, S. M. Zakeeruddin, M. K. Nazeeruddin, H. A. Ribeiro, A. Mendes and M. Gratzel, Chem.phys.chem., 2009, 10, 1117.
    4. A. Hagfeldt and M. Gratzel, Acc. Chem. Res., 2000, 33, 269
    5. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gratzel, J. Am. Chem. Soc., 2005, 127, 16835
    6. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel, Science, 2011, 334, 629
    7. S. W. Rhee and W. Kwon, Korean J. Chem. Eng., 2011, 28, 1481.
    8. S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil,W. O. Wallace, D. Werder and V. I. Klimov, J. Am. Chem. Soc., 2007, 129, 11708
    9. http://www.cexci.com/Air%20Mass%20AM0%20AM1%20AM1%205%20AM
    1%205G%20AM2.html
    10. http://www.eternalsun.com/technology/aaa-accuracy/
    11. P. V. Kamat, J. Phys.Chem. C, 2008, 112, 18737
    12. G. Sun, The Intersubband Approach to Si-based Lasers, Advances in Lasers and Electro Optics, Nelson Costa and Adolfo Cartaxo (Ed.), 2010
    13. A. P. Alivisatos, Science, 1996, 271, 933
    14. J. Jasieniak, M. Califano and S. E. Watkins, ACS Nano, 2011, 5, 5888
    15. A. J. Nozik, Inorg. Chem., 2005, 44, 6893
    16. A. S. Brown and M. Green, Physica E, 2002, 14, 96.
    17. W. Shockley and H. J. Queisser, J. Appl. Phys., 1961, 32, 510
    18. L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi and G. A. Ozin, J. Am. Chem. Soc., 2006, 128, 10337
    19. W. W. Lu, L. Qu, W. Guo and X. Peng, Chem. Mater., 2003, 15, 2854
    20. N. Serpone, E. Borgarello and M. Gratzel, J. Chem. Soc., Chem. Commun., 1984, 342
    21. R. Vogel, P. Hoyer amd H. Weller, J. Phys. Chem., 1994, 98, 3183
    22. A. Zaban, O. I. Mićić, B. A. Gregg and A. J. Nozik, Langmuir, 1998, 14, 3153
    23. L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, Chem. Commun., 2002, 1030
    24. S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen and Y. M. Yang, Appl. Phys. Lett., 2007, 90, 143517
    25. C. H. Chang and Y. L. Lee, Appl. Phys. Lett., 2007, 91, 053503
    26. Y. L. Lee and Y. S. Lo, Adv. Funct. Mater., 2009, 19, 604
    27. Z. Pan, H. Zhang, K. Cheng, Y. Hou, J. Hua and X. Zhong, ACS Nano, 2012, 6, 3982
    28. M. Gratzel, Inorg. Chem., 2005, 44, 6841
    29. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, Solar Energy Materials & Solar Cells, 2001, 70, 85
    30. Z. Yang, C. Y. Chen, C. W. Liu, C. L. Li and H. T. Chang, Adv. Energy Mater., 2011, 1, 259
    31. S. Hachiya, Y. Onish, Q. Shen and T. Toyoda, J. Appl. Phys., 2011, 110, 054319
    32. K. Yu, X. Lin, G. Lu, Z. Wen, C. Yuan and J. Chen, RSC Adv., 2012, 2, 7843
    33. T. L. Li, Y. L. Lee and H. S. Teng, Energy Environ. Sci., 2012, 5, 5315

    34. J. Y. Chang, L. F. Su, C. H. Li, C. C. Chang and J. M. Lin, Chem. Commun., 2012, 48, 4848
    35. M. Samadpour, P. P. Boix, S. Gimenez, A. I. Zad, N. Taghavinia, I. M. Sero and J. Bisquert, J. Phys. Chem. C, 2011, 115, 14400
    36. P. Sudhagar, V. G. Pedro, I. M. Sero, F. F. Santiago, J. Bisquert and Y. S. Kang, J. Mater. Chem., 2012, 22, 14228
    37. D. R. Pernik, K. Tvrdy, J. G. Radich and P. V. Kamat, J. Phys. Chem. C, 2011, 115, 13511
    38. N. Guijarro, T. L. Villarreal, I. M. Sero, J. Bisquert and R. Gomez, J. Phys. Chem. C, 2009, 113, 4208
    39. J. B. Sambur, S. C. Riha, D. Chio and B. A. Parkinson, Langmuir, 2010, 26, 4839
    40. H. Zhang, K. Cheng, Y. M. Hou, Z. Fang, Z. X. Pan, W. J. Wu, J. L. Hua and X. H. Zhong, Chem. Commun., 2012, 48, 11235
    41. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2008, 130, 4007
    42. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2006, 128, 2385
    43. R. S. Dibbell and D. F. Watson, J. Phys. Chem. C, 2009, 113, 3139
    44. H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Gratzel and M. K. Nazeeruddin, J. Phys. Chem. C, 2008, 112, 11600
    45. T. L. Li, Y. L. Lee and H. Teng, J. Mater. Chem., 2011, 21, 5089
    46. J. T. Margraf, A. Ruland, V. Sgobba, D. M. Guldi and T. Clark, Langmuir, 2013, 29, 2434
    47. M. Kosmulski, Adv. Colloid Interface Sci., 2002, 99, 255
    48. J. Chen, D. W. Zhao, J. L. Song, X. W. Sun, W. Q. Deng, X. W. Liu and W. Lei, Electrochem. Commun., 2009, 11, 2265
    49. M. H. Jung and M. G. Kang, J. Mater. Chem., 2011, 21, 2694
    50. L. Li, A. Pandey, D. J. Werder, B. P. Khanal, J. M. Pietryga and V. I. Klimov, J. Am. Chem. Soc., 2011, 133, 1176
    51. H. O. Kirchner, Metall. Trans., 1971, 2, 2861
    52. M. Z. Fahmi and J. Y. Chang, Nanoscale, 2013, 5, 1517
    53. L. H. Thompson and L. K. Doraiswamy, Ind. Eng. Chem. Res., 1999, 38 ,1215
    54. L. Zhang, R. He and H. C. Gu, Applied Surface Science, 2006, 253, 2611
    55. W. D. Xiang, H. L. Yang, X. J. Liang, J. S. Zhong, Jing Wang, Le Luo and Cui-Ping Xie, J. Mater. Chem. C, 2013, 1, 2014
    56. S. Sadhu and A. Patra, J. Phys. Chem.C, 2012, 116, 15167
    57. P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles and K, D. Jandt, Surf. Sci., 2001, 491, 405
    58. J. Xu, X. Yang, T. L. Wong and C. S. Lee, Nanoscale, 2012, 4, 6537
    59. Z. Yang, C. Y. Chen, C. W. Liu, C. L. Li and H. T. Chang, Adv. Energy Mater., 2011, 1, 259
    60. M. S. Faber, K. Park, M. C. Acevedo, P. K. Santra and S. Jin, J. Phys. Chem. Lett., 2013, 4, 1843
    61. X. Hu, Q. Zhang, X. Huang, D. Li, Y. Luo and Q. Meng, J. Mater. Chem., 2011, 21, 15903
    62. J. G. Radich, R. Dwyer and P. V. Kamat, J. Phys. Chem. Lett., 2011, 2, 2453
    63. A. Prakash, H. Zhu, C. J. Jones, D. N. Benoit, A. Z. Ellsworth, E. L. Bryant and Vicki, ACS Nano, 2009, 3, 2139
    64. H. McDaniel, N. Fuke, J. M. Pietryga and V. I. Klimov, J. Phys. Chem. Lett., 2013, 4, 355
    65. D. Kuang, P. Walter, F. Nuesch, S. Kim, J. Ko, P. Comte, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Gratzel, Langmuir, 2007, 23,10906
    66. W. Lee, S. H. Kang, S. K. Min, Y. E. Sung, S. H. Han, Electrochem. Commun., 2008, 10, 1579
    67. G. Y. Lan, Z. Yang, Y. W. Lin, Z. H. Lin, H. Y. Liao and H. T. Chang, J. Mater. Chem., 2009, 19, 2349
    68. Y. L. Lee and Y. S. Lo, Adv. Funct. Mater., 2009, 19, 604
    69. X. Wang, R. Liu, T. Wang, B. Wang, Y. Xu and H.Wang, ACS Appl. Mater. Interfaces, 2013, 5, 3312
    70. M. E. Rincon, M, Sanchez, A. Olea, I. Ayala and P. K. Nair, Solar Energy Mater. Solar Cells, 1998, 52, 399
    71. M. E. Rincon, A. Jimenez, A. Orihuela and G. Martinez, Solar Energy Mater. Solar Cells, 2001, 70, 163
    72. Z. Chen, W. Peng, K. Zhang, J. Zhang, M. Yanagida and L. Han, Nanoscale, 2012, 4, 7690

    無法下載圖示 全文公開日期 2018/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE