簡易檢索 / 詳目顯示

研究生: ​張家其
Mochamad - Zakki fahmi
論文名稱: 利用簡單相轉移方法將奈米粒子應用於癌細胞檢測與治療
SIMPLE PHASE TRANSFER METHODS ON PROVIDING WATER-SOLUBLE NANOPARTICLES FOR CANCER CELL DETECTION AND THERAPEUTICS
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 何郡軒
Jinn-Hsuan Ho
蔡伸隆
Shen-Long Tsai
何明樺
Ming-Hua Ho
麥富德
Fu-Der Mai
黃志清
Chih-Ching Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 150
中文關鍵詞: 納米粒子相轉移簡單癌症檢測癌症的治療
外文關鍵詞: Nanoparticles, Phase transfer, Simple, Cancer detection, Cancer therapeutic
相關次數: 點閱:290下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於奈米粒子其優異性及可與癌細胞相互作用的性質,在癌症檢測和治療的應用不斷提升。在一些案例中,對於製備含有卓越功能的水溶性奈米粒子仍然存在複雜的方式,以及如何使他們成為一個有功效和有效率的探針於生物應用仍是一個問題。在本研究中,利用相轉移策略,將幾種油溶性奈米粒子包含複合奈米粒子(AgInS2/ZnS),黄金,四氧化三鐵,及氧化錳鐵,透過溶劑熱合成法製備成水相奈米粒子。該策略的設計藉由一個容易且簡單的相轉換奈米粒子且對原始的奈米粒子性質為最低影響。基本上,有兩種方法透過簡單的相轉移策略可以合成水溶性奈米粒子,其一是利用烷基配位體,此配位體的碳鏈在奈米粒子的表面可以使奈米表面形成親水性。這些碳鏈分子是相當小而可以順利的包覆和防止相轉移的奈米粒子形成聚集。其二,利用蛋白質,即牛血清白蛋白的應用,研究用於同時傳輸不同類型的奈米粒子。這種蛋白可以的透過結合AgInS2/ZnS和MnFe2O4的性質在一起成功形成雙重探測能力(magnetofluorecent奈米簇)。一般情况下,這兩種方法可以產生相當卓越之内穩定的水溶性奈米粒子(針對不同的酸鹼值和鹽濃度)且有顯著無毒性並可以安全地實驗在生物應用。將葉酸和一些抗癌藥物(如cisplatin和 doxorubicin)利用共價鍵或非共價鍵嫁接在奈米粒子上以執行特定癌症的標靶和藥物輸送能力之研究。觀察在光譜分析和核磁共振圖可以顯示這些奈米粒子再嫁接上葉酸或抗癌藥物仍然存在他們的基本性質。幾種體外分析,包括MTT分析法,雷射掃描共軛焦顯微鏡技術,磁共振圖像,穿透式電子顯微鏡 (TEM)和流式細胞術進行了確認設計的奈米粒子作為癌症檢測和治療的效能。


    Application of nanoparticles on cancer detection and therapy has been continuously improved due to their fascinating properties when interacted at cancer cells. For several cases, the excellence features offered by nanoparticles remained problems related to complicating way on preparing water-soluble nanoparticles and how make them be an efficient and effective probe for biological application. In the present study, phase transfer strategies were proposed on the several oil-soluble nanoparticles (i.e. AgInS2/ZnS, gold, Fe3O4, and MnFe2O4) that prepared via solvothermal method. The strategies were designed by promoting a facile and simple process within minimize degradation the original properties of transferred nanoparticles. Generally, two approaches would be investigated on providing water-soluble nanoparticles through simple phase transfer strategy; first, utilization of alkyl-capping ligands that will interdigitate with carbon chain on the surface of nanoparticles by performing hydrophilic site as the face. These molecules were quite small, thus can smoothly capsuling and prevent aggregation of transferred nanoparticles. Second, potential application of protein, e.q. bovine serum albumin (BSA), was also investigated for simultaneous transferring and binding different kinds of nanoparticles. BSA can successfully form dual-probing capability (magnetofluorecent nanocluster) by binding AgInS2/ZnS and MnFe2O4 together. In general, the both approaches can fairly generate water-soluble nanoparticles within excellence stability (against varied pH and salt concentration) and non-toxic, thus can be safely implemented on biological application.
    For next studies, the as-prepared nanoparticles were directed to performing cancer specific targeting and drug delivery capability. Thus, the folic acid and some cancer drugs (such as cisplatin and doxorubicin) were then conjugated on the nanoparticles using both covalent and non-covalent conjugation. Here, observations with spectra analysis and magnetic resonance could reveal that the nanoparticles still exhibit their basic properties, even after conjugated with proposed agents. Several in vitro analyses, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay, confocal laser microscopy, magnetic resonance images, transmission electron microscopy (TEM), and flow cytometry were carried out to confirming the performance of designed nanoparticles as cancer detection and therapeutic.

    DOCTORAL DISSERTATION RECOMMENDATION FORM I QUALIFICATION FORM BY DOCTORAL DEGREE EXAMINATION COMMITTEE II CHINESE ABSTRACT III ABSTRACT IV ACKNOWLEDGEMENT VI TABLE OF CONTENTS VII LIST OF FIGURE IX LIST OF TABLE XVI LIST OF SCHEME XVII LIST OF ABBREVIATION XVIII CHAPTER I INTRODUCTION 1 1.1 General Introduction 2 1.2 Objective of the Study 5 1.3 Structure of Dissertation 5 CHAPTER II LITERATURE REVIEW 8 2.1 Nanoparticles 9 2.2 Biological Application of Nanoparticles 34 2.3 Phase Transfer Methods 36 2.4 Functionalization of Nanoparticles 43 CHAPTER III SIMPLE PHASE TRANSFER METHOD OF QUANTUM DOTS VIA ALKYL-CAPPING LIGANDS CAPSULATION FOR CANCER STAINING 48 3.1 Introduction 49 3.2 Experimental Section 50 3.3 Results and Discussion 54 CHAPTER IV NOVEL ONE-POT APPROACH FOR SIMULTANEOUSLY PHASE TRANSFER, FOLIC ACID CONJUGATION AND DRUG LOADING OF OIL-SOLUBLE NANOPARTICLES 70 4.1 Introduction 71 4.2 Experimental Section 72 4.3 Results and Discussion 78 CHAPTER V UTILIZATION BSA AS PHASE TRANSFERRING AND CLUSTERING AGENTS FOR MAGNETO FLUORECENT-IMAGING AND DRUG DELIVERY NANOPARTICLES 91 5.1 Introduction 92 5.2 Experimental Section 94 5.3 Results and Discussion 100 CHAPTER VI CONCLUSIONS AND FUTURE OUTLOOKS 117 6.1 Conclusion 118 6.2 Future Outlooks 119 REFERENCES 120 CURRICULUM VITE 129 AUTHORIZATION 131

    . B. W. Stewart, C. P. Wild and editors, Lyon, France: International Agency for Research on Cancer, 2014.
    2. C. Fang, F. M. Kievit, O. Veiseh, Z. R. Stephen, T. Wang, D. Lee, R. G. Ellenbogen and M. Zhang, J. Controlled Release, 2012, 162, 233-241.
    3. B. Godin, E. Tasciotti, X. Liu, R. E. Serda and M. Ferrari, Acc. Chem. Res., 2011, 44, 979-989.
    4. J.-H. Lee, Y.-M. Huh, Y.-w. Jun, J.-w. Seo, J.-t. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, Nat. Med., 2007, 13, 95-99.
    5. Y. Pan, H. Bao, N. G. Sahoo, T. Wu and L. Li, Adv. Funct. Mater., 2011, 21, 2754-2763.
    6. J. K. Oh, J. Mater. Chem., 2010, 20, 8433-8445.
    7. P. Wu, L.-N. Miao, H.-F. Wang, X.-G. Shao and X.-P. Yan, Angew. Chem. Int. Ed., 2011, 50, 8118-8121.
    8. H. Zhao, M. Chaker and D. Ma, J. Mater. Chem., 2011, 21, 17483-17491.
    9. H. Fan, Chem. Commun., 2008, 1383-1394.
    10. Q. Ma, I. Castello Serrano and E. Palomares, Chem. Commun., 2011, 47, 7071-7073.
    11. R. Kumar, H. Ding, R. Hu, K.-T. Yong, I. Roy, E. J. Bergey and P. N. Prasad, Chem. Mater., 2010, 22, 2261-2267.
    12. R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ʼ. Hart, A. van Blaaderen, D. Vanmaekelbergh and A. Meijerink, Chem. Mater., 2008, 20, 2503-2512.
    13. D. Janczewski, N. Tomczak, M.-Y. Han and G. J. Vancso, Nat. Protocols, 2011, 6, 1546-1553.
    14. R. E. Anderson and W. C. W. Chan, ACS Nano, 2008, 2, 1341-1352.
    15. L. Yuwen, B. Bao, G. Liu, J. Tian, H. Lu, Z. Luo, X. Zhu, F. Boey, H. Zhang and L. Wang, Small, 2011, 7, 1456-1463.
    16. Y. Chang, N. Liu, L. Chen, X. Meng, Y. Liu, Y. Li and J. Wang, J. Mater. Chem., 2012, 22, 9594-9601.
    17. F. Wang, G. M. Pauletti, J. Wang, J. Zhang, R. C. Ewing, Y. Wang and D. Shi, Adv. Mater., 2013, 25, 3485-3489.
    18. X. Yang, H. Hong, J. J. Grailer, I. J. Rowland, A. Javadi, S. A. Hurley, Y. Xiao, Y. Yang, Y. Zhang, R. J. Nickles, W. Cai, D. A. Steeber and S. Gong, Biomaterials, 2011, 32, 4151-4160.
    19. L. Zhang, J. Xia, Q. Zhao, L. Liu and Z. Zhang, Small, 2010, 6, 537-544.
    20. J.-S. Choi, J. C. Park, H. Nah, S. Woo, J. Oh, K. M. Kim, G. J. Cheon, Y. Chang, J. Yoo and J. Cheon, Angew. Chem. Int. Ed., 2008, 47, 6259-6262.
    21. R. Costi, A. E. Saunders, E. Elmalem, A. Salant and U. Banin, Nano Lett., 2008, 8, 637-641.
    22. J. Chen, Z. Guo, H.-B. Wang, M. Gong, X.-K. Kong, P. Xia and Q.-W. Chen, Biomaterials, 2013, 34, 571-581.
    23. F. Erogbogbo, K.-T. Yong, R. Hu, W.-C. Law, H. Ding, C.-W. Chang, P. N. Prasad and M. T. Swihart, ACS Nano, 2010, 4, 5131-5138.
    24. H. M. Kim, H. Lee, K. S. Hong, M. Y. Cho, M.-H. Sung, H. Poo and Y. T. Lim, ACS Nano, 2011, 5, 8230-8240.
    25. J.-H. Park, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia and M. J. Sailor, Angew. Chem., 2008, 120, 7394-7398.
    26. A. Scheffold, S. Miltenyi and A. Radbruch, Immunotechnology, 1995, 1, 127-137.
    27. T. Tsuzuki, Int. J. Nanotechnol., 2009, 6, 567-578.
    28. Y.-M. Huh, Y.-w. Jun, H.-T. Song, S. Kim, J.-s. Choi, J.-H. Lee, S. Yoon, K.-S. Kim, J.-S. Shin, J.-S. Suh and J. Cheon, J. Am. Chem. Soc., 2005, 127, 12387-12391.
    29. X. Yang, C. Shi, R. Tong, W. Qian, H. E. Zhau, R. Wang, G. Zhu, J. Cheng, V. W. Yang, T. Cheng, M. Henary, L. Strekowski and L. W. K. Chung, Clinical Cancer Research, 2010, 16, 2833-2844.
    30. H. Ina, H. Shibuya, I. Ohashi and M. Kitagawa, Cancer, 1994, 73, 2038-2041.
    31. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke and T. Nann, Nat Meth, 2008, 5, 763-775.
    32. J. Aldana, Y. A. Wang and X. Peng, J. Am. Chem. Soc., 2001, 123, 8844-8850.
    33. B. A. Rzigalinski and J. S. Strobl, Toxicol. Appl. Pharmacol., 2009, 238, 280-288.
    34. M. G. Bawendi, M. L. Steigerwald and L. E. Brus, Annu. Rev. Phys. Chem., 1990, 41, 477-496.
    35. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Science, 2005, 307, 538-544.
    36. J. Cox, in J. Chem. Brit., Royal Society of Chemistry, England, 2003, pp. 1-8.
    37. X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc., 1997, 119, 7019-7029.
    38. W. A. Hild, M. Breunig and A. Goepferich, European Journal of Pharmaceutics and Biopharmaceutics 88, 2008, 68, 153-168.
    39. R. E. Bailey, A. M. Smith and S. Nie, Physica E 64, 2004, 25, 1-12.
    40. S. B. Rizvi, S. Ghaderi, M. Keshtgar and A. M. Seifalian, Nano Reviews, 2010, 1, 5161.
    41. Z. Deutsch, A. Avidan, I. Pinkas and D. Oron, PCCP, 2011, 13, 3210-3219.
    42. M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik and G. Rumbles, J. Phys. Chem. B, 2003, 107, 11346-11352.
    43. A. Sitt, F. D. Sala, G. Menagen and U. Banin, Nano Lett., 2009, 9, 3470-3476.
    44. T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya, F. Guillemin, F. Marchal and B. Dubertret, ACS Nano, 2010, 4, 2531-2538.
    45. A. Zhang, Q. Ma, M. Lu, G. Yu, Y. Zhou and Z. Qiu, Cryst. Growth Des., 2008, 8, 2402-2405.
    46. Y.-H. A. Wang, X. Zhang, N. Bao, B. Lin and A. Gupta, J. Am. Chem. Soc., 2011, 133, 11072-11075.
    47. M. Deng, S. Shen, X. Wang, Y. Zhang, H. Xu, T. Zhang and Q. Wang, CrystEngComm, 2013, 15, 6443-6447.
    48. L. Tian, H. I. Elim, W. Ji and J. J. Vittal, Chem. Commun., 2006, 4276-4278.
    49. T. Uematsu, T. Doi, T. Torimoto and S. Kuwabata, J. Phys. Chem. Lett., 2010, 1, 3283-3287.
    50. J.-Y. Chang, G.-Q. Wang, C.-Y. Cheng, W.-X. Lin and J.-C. Hsu, J. Mater. Chem., 2012, 22, 10609-10618.
    51. X. Tang, K. Yu, Q. Xu, E. S. G. Choo, G. K. L. Goh and J. Xue, J. Mater. Chem., 2011, 21, 11239-11243.
    52. T. Torimoto, T. Adachi, K.-I. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo and S. Kuwabata, J. Am. Chem. Soc., 2007, 129, 12388-12389.
    53. V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen and V. M. Rotello, J. Mater. Chem., 2011, 21, 16859-16862.
    54. A. J. Martin, T. W. Saucer, G. V. Rodriguez, V. Sih and J. M. Millunchick, Nanotechnology, 2012, 23, 135401.
    55. C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, Chem. Rev., 2005, 105, 1025-1102.
    56. C. F. Hoener, K. A. Allan, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber and J. M. White, J. Phys. Chem., 1992, 96, 3812-3817.
    57. L. Spanhel and M. A. Anderson, J. Am. Chem. Soc., 1991, 113, 2826-2833.
    58. D. Bera, L. Qian, S. Sabui, S. Santra and P. H. Holloway, Opt. Mater., 2008, 30, 1233-1239.
    59. C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706-8715.
    60. L. Li, H. Qian and J. Ren, Chem. Commun., 2005, 528-530.
    61. R. M. Penner, Acc. Chem. Res., 2000, 33, 78-86.
    62. K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara and Y. Arakawa, J. Cryst. Growth, 2013, 378, 459-462.
    63. A. Valizadeh, H. Mikaeili, M. Samiei, S. Farkhani, N. Zarghami, M. kouhi, A. Akbarzadeh and S. Davaran, Nanoscale Res. Lett., 2012, 7, 1-14.
    64. S. M. Olsthoorn, F. A. J. M. Driessen, A. P. A. M. Eijkelenboom and L. J. Giling, J. Appl. Phys., 1993, 73, 7798-7803.
    65. J. J. Hou, N. Han, F. Wang, F. Xiu, S. Yip, A. T. Hui, T. Hung and J. C. Ho, ACS Nano, 2012, 6, 3624-3630.
    66. O. Veiseh, J. W. Gunn and M. Zhang, Adv. Drug Deliv. Rev., 2010, 62, 284-304.
    67. A.-H. Lu, E. L. Salabas and F. Schuth, Angew. Chem. Int. Ed., 2007, 46, 1222-1244.
    68. X. Zheng, L. Zhang, J. Li, S. Luo and J.-P. Cheng, Chem. Commun., 2011, 47, 12325-12327.
    69. Y. W. Jun, J. H. Lee and J. Cheon, Angew. Chem. Int. Ed., 2008, 47, 5122-5135.
    70. M. Creixell, A. C. Bohorquez, M. Torres-Lugo and C. Rinaldi, ACS Nano, 2011, 5, 7124-7129.
    71. B. Xavier and L. Amilcar, J. Phys. D: Appl. Phys., 2002, 35, R15.
    72. F.-Y. Cheng, C.-H. Su, Y.-S. Yang, C.-S. Yeh, C.-Y. Tsai, C.-L. Wu, M.-T. Wu and D.-B. Shieh, Biomaterials, 2005, 26, 729-738.
    73. J. Mohapatra, A. Mitra, D. Bahadur and M. Aslam, CrystEngComm, 2013, 15, 524-532.
    74. D. H. Kim, H. Zeng, T. C. Ng and C. S. Brazel, J. Magn. Magn. Mater., 2009, 321, 3899-3904.
    75. Y. Yu, K. Sun, Y. Tian, X. Z. Li, M. J. Kramer, D. J. Sellmyer, J. E. Shield and S. Sun, Nano Lett., 2013, 13, 4975-4979.
    76. B. Wang, C. Xu, J. Xie, Z. Yang and S. Sun, J. Am. Chem. Soc., 2008, 130, 14436-14437.
    77. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang and G. Li, J. Am. Chem. Soc., 2003, 126, 273-279.
    78. X. Wang, J. Zhuang, Q. Peng and Y. Li, Nature, 2005, 437, 121-124.
    79. S. Wu, A. Sun, F. Zhai, J. Wang, W. Xu, Q. Zhang and A. A. Volinsky, Mater. Lett., 2011, 65, 1882-1884.
    80. E. E. Carpenter, C. T. Seip and C. J. O’Connor, J. Appl. Phys., 1999, 85, 5184-5186.
    81. M.-C. Daniel and D. Astruc, Chem. Rev., 2003, 104, 293-346.
    82. M. Faraday, Philos. Mag., 1857, 14, 512-539.
    83. M. L. Personick and C. A. Mirkin, J. Am. Chem. Soc., 2013, 135, 18238-18247.
    84. V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan and F. J. Garcia de Abajo, Chem. Soc. Rev., 2008, 37, 1792-1805.
    85. S. Eustis and M. A. El-Sayed, Chem. Soc. Rev., 2006, 35, 209-217.
    86. R. J. White, R. Luque, V. L. Budarin, J. H. Clark and D. J. Macquarrie, Chem. Soc. Rev., 2009, 38, 481-494.
    87. E. Katz and I. Willner, Angew. Chem. Int. Ed., 2004, 43, 6042-6108.
    88. Z. Wang, B. Tan, I. Hussain, N. Schaeffer, M. F. Wyatt, M. Brust and A. I. Cooper, Langmuir, 2006, 23, 885-895.
    89. M. Brust and C. J. Kiely, Colloids and Surfaces A: Physicochem. Eng. Aspects 400, 2002, 202, 175-186.
    90. I. Takashi and O. Shinji, Nature, 2000, 406, 1027-1031.
    91. G. M. Wallraff and W. D. Hinsberg, Chem. Rev., 1999, 99, 1801-1822.
    92. M. Daimon and A. Masumura, Appl. Opt., 2002, 41, 5275-5281.
    93. W. L. Barnes, S. C. Kitson, T. W. Preist and J. R. Sambles, J. Opt. Soc. Am. A, 1997, 14, 1654-1661.
    94. P. M. Mendes, S. Jacke, K. Critchley, J. Plaza, Y. Chen, K. Nikitin, R. E. Palmer, J. A. Preece, S. D. Evans and D. Fitzmaurice, Langmuir, 2004, 20, 3766-3768.
    95. S.-W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner and C. A. Mirkin, Small, 2005, 1, 64-69.
    96. M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmuller and J. Feldmann, ACS Nano, 2013, 7, 7648-7653.
    97. W. Zhou and T. W. Odom, Nat. Nano, 2011, 6, 423-427.
    98. J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A, 1995, 13, 1553-1558.
    99. W. Huang, W. Qian and M. A. El-Sayed, SPIE 5927, Plasmonics: Metallic Nanostructures and Their Optical Properties III, San Diego, California, USA, 2005.
    100. J. Turkevich, P. C. Stevenson and J. Hillier, Discuss. Faraday Soc., 1951, 11, 55-75.
    101. G. Frens, Nature: Phys. Sci., 1973, 241, 20-22.
    102. M. Brust, J. Fink, D. Bethell, D. J. Schiffrin and C. Kiely, J. Chem. Soc., Chem. Commun., 1995, 1655-1656.
    103. T. Yonezawa and T. Kunitake, Colloids and Surfaces A: Physicochem. Eng. Aspects 400, 1999, 149, 193-199.
    104. W. W. Weare, S. M. Reed, M. G. Warner and J. E. Hutchison, J. Am. Chem. Soc., 2000, 122, 12890-12891.
    105. M. Green and P. O'Brien, Chem. Commun., 2000, 183-184.
    106. S. Gomez, K. Philippot, V. Colliere, B. Chaudret, F. Senocq and P. Lecante, Chem. Commun., 2000, 1945-1946.
    107. P. R. Selvakannan, S. Mandal, S. Phadtare, R. Pasricha and M. Sastry, Langmuir, 2003, 19, 3545-3549.
    108. F. Chen, G.-Q. Xu and T. S. A. Hor, Mater. Lett., 2003, 57, 3282-3286.
    109. B.-H. Sohn, J.-M. Choi, S. I. Yoo, S.-H. Yun, W.-C. Zin, J. C. Jung, M. Kanehara, T. Hirata and T. Teranishi, J. Am. Chem. Soc., 2003, 125, 6368-6369.
    110. C.-L. Chiang, M.-B. Hsu and L.-B. Lai, J. Solid State Chem., 2004, 177, 3891-3895.
    111. D. Zhao, J. Li, T. Yang and Z. He, Biosens. Bioelectron., 2014, 52, 29-35.
    112. C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu and Q. Wang, Biomaterials, 2014, 35, 393-400.
    113. V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer and O. C. Farokhzad, Nano Lett., 2007, 7, 3065-3070.
    114. C. E. Probst, P. Zrazhevskiy, V. Bagalkot and X. Gao, Adv. Drug Deliv. Rev., 2013, 65, 703-718.
    115. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller and D. I. Gittins, Phys. Rev. Lett., 2002, 89, 203002.
    116. X. Huang, I. H. El-Sayed, W. Qian and M. A. El-Sayed, J. Am. Chem. Soc., 2006, 128, 2115-2120.
    117. R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella and W. J. Parak, Chem. Soc. Rev., 2008, 37, 1896-1908.
    118. R. Weissleder, D. D. Stark, B. L. Engelstad, B. R. Bacon, C. C. Compton, D. L. White, P. Jacobs and J. Lewis, Am. J. Roentgenol., 1989, 152, 167-173.
    119. X. Lu, H.-Y. Tuan, B. A. Korgel and Y. Xia, Chem. Eur. J., 2008, 14, 1584-1591.
    120. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang and T. Hyeon, Nat. Mater., 2004, 3, 891-895.
    121. S. H. Bhang, N. Won, T.-J. Lee, H. Jin, J. Nam, J. Park, H. Chung, H.-S. Park, Y.-E. Sung, S. K. Hahn, B.-S. Kim and S. Kim, ACS Nano, 2009, 3, 1389-1398.
    122. D. I. Gittins and F. Caruso, ChemPhysChem, 2002, 3, 110-113.
    123. X. Yuan, Z. Luo, Q. Zhang, X. Zhang, Y. Zheng, J. Y. Lee and J. Xie, ACS Nano, 2011, 5, 8800-8808.
    124. J. Minglei, Y. Wuli, R. Qingguang and L. Daru, Nanotechnology, 2009, 20, 075101.
    125. Y. Wang, J. F. Wong, X. Teng, X. Z. Lin and H. Yang, Nano Lett., 2003, 3, 1555-1559.
    126. H. Fan, E. W. Leve, C. Scullin, J. Gabaldon, D. Tallant, S. Bunge, T. Boyle, M. C. Wilson and C. J. Brinker, Nano Lett., 2005, 5, 645-648.
    127. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez, Nat. Biotech., 2003, 21, 41-46.
    128. E. E. Lees, M. J. Gunzburg, T.-L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton and P. Mulvaney, Nano Lett., 2008, 8, 2883-2890.
    129. F. Zhang, E. Lees, F. Amin, P. Rivera_Gil, F. Yang, P. Mulvaney and W. J. Parak, Small, 2011, 7, 3113-3127.
    130. W. Y. William, C. Emmanuel, M. S. Christie, D. Rebekah and L. C. Vicki, Nanotechnology, 2006, 17, 4483.
    131. D. Giaume, M. l. Poggi, D. Casanova, G. v. Mialon, K. Lahlil, A. Alexandrou, T. Gacoin and J.-P. Boilot, Langmuir, 2008, 24, 11018-11026.
    132. L. Huang, Q. Wu, J. Wang, M. Foda, J. Liu, K. Cai and H. Han, Chem. Commun., 2014, 50, 2896-2899.
    133. J. Pan, D. Wan and J. Gong, Chem. Commun., 2011, 47, 3442-3444.
    134. Y. Yang, L. Jing, X. Yu, D. Yan and Gao, Chem. Mater., 2007, 19, 4123-4128.
    135. A. Swami, A. Kumar and M. Sastry, Langmuir, 2003, 19, 1168-1172.
    136. A. Prakash, H. Zhu, C. J. Jones, D. N. Benoit, A. Z. Ellsworth, E. L. Bryant and V. L. Colvin, ACS Nano, 2009, 3, 2139-2146.
    137. S. Liang, X. Zhang, Z. Wu, Y. Liu, H. Zhang, H. Sun, H. Sun and B. Yang, CrystEngComm, 2012, 14, 3484-3489.
    138. B. L. V. Prasad, S. K. Arumugam, T. Bala and M. Sastry, Langmuir, 2005, 21, 822-826.
    139. N. Erathodiyil and J. Y. Ying, Acc. Chem. Res., 2011, 44, 925-935.
    140. B. Rybtchinski, ACS Nano, 2011, 5, 6791-6818.
    141. L. M. Kaminskas, V. M. McLeod, C. J. H. Porter and B. J. Boyd, Mol. Pharmaceutics, 2012, 9, 355-373.
    142. J. M. Berlin, T. T. Pham, D. Sano, K. A. Mohamedali, D. C. Marcano, J. N. Myers and J. M. Tour, ACS Nano, 2011, 5, 6643-6650.
    143. C. K. Kim, P. Ghosh, C. Pagliuca, Z.-J. Zhu, S. Menichetti and V. M. Rotello, J. Am. Chem. Soc., 2009, 131, 1360-1361.
    144. K. Chen, Z.-B. Li, H. Wang, W. Cai and X. Chen, Eur. J. Nucl. Med. Mol. Imaging, 2008, 35, 2235-2244.
    145. N. Zheng, W. Dai, W. Du, H. Zhang, L. Lei, H. Zhang, X. Wang, J. Wang, X. Zhang, J. Gao and Q. Zhang, Mol. Pharmaceutics, 2012, 9, 1175-1188.
    146. N. F. Steinmetz, A. L. Ablack, J. L. Hickey, J. Ablack, B. Manocha, J. S. Mymryk, L. G. Luyt and J. D. Lewis, Small, 2011, 7, 1664-1672.
    147. A. Taheri, R. Dinarvand, F. Ahadi, M. R. Khorramizadeh and F. Atyabi, Int. J. Pharm., 2012, 431, 183-189.
    148. K. K. Comfort, E. I. Maurer, L. K. Braydich-Stolle and S. M. Hussain, ACS Nano, 2011, 5, 10000-10008.
    149. H. S. Choi, W. Liu, F. Liu, K. Nasr, P. Misra, M. G. Bawendi and J. V. Frangioni, Nat. Nano, 2010, 5, 42-47.
    150. E. Sega and P. Low, Canc. Metastasis Rev., 2008, 27, 655-664.
    151. N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low and C. P. Leamon, Anal. Biochem., 2005, 338, 284-293.
    152. F. Shen, J. F. Ross, X. Wang and M. Ratnam, Biochemistry, 1994, 33, 1209-1215.
    153. B. A. Kamen and J. D. Caston, Biochem. Pharmacol., 1986, 35, 2323-2329.
    154. P. S. Low and S. A. Kularatne, Curr. Opin. Chem. Biol., 2009, 13, 256-262.
    155. Y. Lu and P. S. Low, Adv. Drug Deliv. Rev., 2012, 64, 342-352.
    156. K. G. Rothberg, Y. S. Ying, B. A. Kamen and R. G. Anderson, J. Cell Biol., 1990, 111, 2931-2938.
    157. S. Mayor, K. Rothberg and F. Maxfield, Science, 1994, 264, 1948-1951.
    158. J.-C. Hsu, C.-C. Huang, K.-L. Ou, N. Lu, F.-D. Mai, J.-K. Chen and J.-Y. Chang, J. Mater. Chem., 2011, 21, 19257-19266.
    159. M. Sivakumar, A. Towata, K. Yasui, T. Tuziuti, T. Kozuka, Y. Iida, M. M. Maiorov, E. Blums, D. Bhattacharya, N. Sivakumar and M. Ashok, Ultrason. Sonochem., 2012, 19, 652-658.
    160. X. Hu and X. Gao, ACS Nano, 2010, 4, 6080-6086.
    161. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty and P. N. Prasad, J. Am. Chem. Soc., 2003, 125, 7860-7865.
    162. S. Ge, F. Liu, W. Liu, M. Yan, X. Song and J. Yu, Chem. Commun., 2014, 50, 475-477.
    163. Y. Liu, K. Li, J. Pan, B. Liu and S.-S. Feng, Biomaterials, 2010, 31, 330-338.
    164. R. Hood, C. Shao, D. Omiatek, W. Vreeland and D. DeVoe, Pharm. Res., 2013, 30, 1597-1607.
    165. Y. Ren, S. M. Wong and L.-Y. Lim, Bioconjugate Chem., 2007, 18, 836-843.
    166. B. R. Liu, Y.-w. Huang, J. G. Winiarz, H.-J. Chiang and H.-J. Lee, Biomaterials, 2011, 32, 3520-3537.
    167. F. Sousa, S. Mandal, C. Garrovo, A. Astolfo, A. Bonifacio, D. Latawiec, R. H. Menk, F. Arfelli, S. Huewel, G. Legname, H.-J. Galla and S. Krol, Nanoscale, 2010, 2, 2826-2834.
    168. S. Duarte, H. Faneca and M. C. Pedroso de Lima, J. Controlled Release, 2011, 149, 264-272.
    169. P. S. Low, W. A. Henne and D. D. Doorneweerd, Acc. Chem. Res., 2007, 41, 120-129.
    170. M. Z. Fahmi and J.-Y. Chang, Nanoscale, 2013, 5, 1517-1528.
    171. C. Shen, C. Hui, T. Yang, C. Xiao, J. Tian, L. Bao, S. Chen, H. Ding and H. Gao, Chem. Mater., 2008, 20, 6939-6944.
    172. Z. Xu, C. Shen, Y. Hou, H. Gao and S. Sun, Chem. Mater., 2009, 21, 1778-1780.
    173. K. Cheng, S. Peng, C. Xu and S. Sun, J. Am. Chem. Soc., 2009, 131, 10637-10644.
    174. J.-Y. Chang, J.-M. Lin, L.-F. Su and C.-F. Chang, ACS Appl. Mater. Interfaces, 2013, 5, 8740-8752.
    175. V. D. Monopoli, A. H. Thomas and A. L. Capparelli, Int. J. Chem. Kinet., 2000, 32, 231-237.
    176. J. D. M. Patring, S. A. Lanina and J. A. Jastrebova, J. Sep. Sci., 2006, 29, 889-904.
    177. R. J. Pugh, Colloids and Surfaces, 1986, 18, 19-41.
    178. L. H. Liu, Rui; Roy, Indrajit; Lin, Guimiao; Ye, Ling; Reynolds, Jessica L.; Liu, Jianwei; Liu, Jing; Schwartz, Stanley A.; Zhang, Xihe; Yong, Ken-Tye, Theranostics, 2013, 3, 109-115.
    179. M. K. Yu, Y. Y. Jeong, J. Park, S. Park, J. W. Kim, J. J. Min, K. Kim and S. Jon, Angew. Chem. Int. Ed., 2008, 47, 5362-5365.
    180. J. Ma, P. Huang, M. He, L. Pan, Z. Zhou, L. Feng, G. Gao and D. Cui, J. Phys. Chem. B, 2012, 116, 14062-14070.
    181. B. Sahoo, K. S. P. Devi, S. K. Sahu, S. Nayak, T. K. Maiti, D. Dhara and P. Pramanik, Biomaterials Science, 2013, 1, 647-657.
    182. J. K. Jaiswal, H. Mattoussi, J. M. Mauro and S. M. Simon, Nat. Biotech., 2003, 21, 47-51.
    183. P. Jiaqi, W. Jumeng, S. Jianmin, G. Shikuan, S. Yingzhuo, Z. Xin and F. Boxue, J. Phys. D: Appl. Phys., 2014, 47, 045504.
    184. C. He, Y. Hu, L. Yin, C. Tang and C. Yin, Biomaterials, 2010, 31, 3657-3666.
    185. S. G. Kwon and T. Hyeon, Small, 2011, 7, 2685-2702.
    186. C. X. Zhang, P. V. Chang and S. J. Lippard, J. Am. Chem. Soc., 2004, 126, 6536-6537.
    187. W. Ding, M. Wada, H. Minamikawa, N. Kameta, M. Masuda and T. Shimizu, Chem. Commun., 2012, 48, 8625-8627.
    188. J. Gu, J. Liu, Y. Li, W. Zhao and J. Shi, Langmuir, 2012, 29, 403-410.
    189. J. Gu, S. Su, Y. Li, Q. He, J. Zhong and J. Shi, J. Phys. Chem. Lett., 2010, 1, 3446-3450.
    190. R. Xing, X. Wang, C. Zhang, J. Wang, Y. Zhang, Y. Song and Z. Guo, J. Mater. Chem., 2011, 21, 11142-11149.
    191. C. Xu, B. Wang and S. Sun, J. Am. Chem. Soc., 2009, 131, 4216-4217.
    192. W. Zhu, Y. Li, L. Liu, Y. Chen, C. Wang and F. Xi, Biomacromolecules, 2010, 11, 3086-3092.
    193. N. Alam, V. Khare, R. Dubey, A. Saneja, M. Kushwaha, G. Singh, N. Sharma, B. Chandan and P. N. Gupta, Mater. Sci. Eng. C, 2014, 38, 85-93.
    194. D. Ding, Z. Zhu, Q. Liu, J. Wang, Y. Hu, X. Jiang and B. Liu, Eur. J. Pharm. Biopharm., 2011, 79, 142-149.
    195. X. Li, R. Li, X. Qian, Y. Ding, Y. Tu, R. Guo, Y. Hu, X. Jiang, W. Guo and B. Liu, Eur. J. Pharm. Biopharm., 2008, 70, 726-734.
    196. X. Sun, Y. Zhang, P. Song, J. Pan, L. Zhuang, W. Xu and W. Xing, ACS Catalysis, 2013, 3, 1726-1729.
    197. R. Bhandari, D. B. Pacardo, N. M. Bedford, R. R. Naik and M. R. Knecht, J. Phys. Chem. C, 2013, 117, 18053-18062.
    198. R. O'Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang and M. Gratzel, Adv. Funct. Mater., 2006, 16, 1566-1576.
    199. T. Mokari, E. Rothenberg, I. Popov, R. Costi and U. Banin, Science, 2004, 304, 1787-1790.
    200. M. J. Hawkins, P. Soon-Shiong and N. Desai, Adv. Drug Deliver. Rev., 2008, 60, 876-885.
    201. R. Brodersen, J. Biol. Chem., 1979, 254, 2364-2369.
    202. J. E. Fletcher, A. A. Spector and J. D. Ashbrook, Biochemistry, 1971, 10, 3229-3232.
    203. A. Mallick, S. C. Bera, S. Maiti and N. Chattopadhyay, Biophys. Chem., 2004, 112, 9-14.
    204. A. Angelini, J. Morales-Sanfrutos, P. Diderich, S. Chen and C. Heinis, J. Med. Chem., 2012, 55, 10187-10197.
    205. C. He, J. Liu, L. Xie, Q. Zhang, C. Li, D. Gui, G. Zhang and C. Wu, Langmuir, 2009, 25, 13456-13460.
    206. B. Zhang, X. Wang, F. Liu, Y. Cheng and D. Shi, Langmuir, 2012, 28, 16605-16613.
    207. P. Murawala, A. Tirmale, A. Shiras and B. L. V. Prasad, Mater. Sci. Eng. C, 2014, 34, 158-167.
    208. J.-H. Lee, K. Lee, S. H. Moon, Y. Lee, T. G. Park and J. Cheon, Angew. Chem., 2009, 121, 4238-4243.
    209. P. Kocbek, N. Obermajer, M. Cegnar, J. Kos and J. Kristl, J. Controlled Release, 2007, 120, 18-26.
    210. L. Zhang, S. Hou, S. Mao, D. Wei, X. Song and Y. Lu, Int. J. Pharm., 2004, 287, 155-162.
    211. S. Soares, N. Mateus and V. de Freitas, J. Agric. Food. Chem., 2007, 55, 6726-6735.
    212. B. Huang, H.-Y. Kim and C. Dass, J. Am. Soc. Mass. Spectrom., 2004, 15, 1237-1247.
    213. R. Sondjaja, T. Alan Hatton and M. K. C. Tam, J. Magn. Magn. Mater., 2009, 321, 2393-2397.
    214. L. Liu, Y. Ma, X. Chen, X. Xiong and S. Shi, J. Chromatogr. B, 2012, 887–888, 55-60.
    215. B. Zhang, Q. Li, P. Yin, Y. Rui, Y. Qiu, Y. Wang and D. Shi, ACS Appl. Mater. Interfaces, 2012, 4, 6479-6486.
    216. E. Edri and O. Regev, Anal. Chem., 2008, 80, 4049-4054.
    217. V. R. Zurawski and J. F. Foster, Biochemistry, 1974, 13, 3465-3471.
    218. D. Gao, D.-Q. Lin and S.-J. Yao, J. Chromatogr. B, 2007, 859, 16-23.
    219. R. E. Martenson, J. Biol. Chem., 1978, 253, 8887-8893.
    220. D. Schmaljohann, Adv. Drug Deliver. Rev., 2006, 58, 1655-1670.
    221. H. Hao, Q. Ma, C. Huang, F. He and P. Yao, Int. J. Pharm., 2013, 444, 77-84.
    222. J. Qi, P. Yao, F. He, C. Yu and C. Huang, Int. J. Pharm., 2010, 393, 177-185.
    223. C. Tan, Z. Sun, Y. Hong, Y. Li, X. Chen and X. Zhang, J. Mater. Chem. B, 2013, 1, 3694.
    224. R. J. Lee and P. S. Low, J. Biol. Chem., 1994, 269, 3198-3204.
    225. C. P. Leamon and P. S. Low, P. Natl. Acad. Sci., 1991, 88, 5572-5576.
    226. A. Sorkin and M. von Zastrow, Nat Rev Mol Cell Biol, 2002, 3, 600-614.
    227. I. I. Slowing, J. L. Vivero-Escoto, C.-W. Wu and V. S. Y. Lin, Adv. Drug Deliver. Rev., 2008, 60, 1278-1288.
    228. M. Vitale, L. Zamai, G. Mazzotti, A. Cataldi and E. Falcieri, Histochemistry, 1993, 100, 223-229.
    229. I. Vermes, C. Haanen, H. Steffens-Nakken and C. Reutellingsperger, Journal of Immunological Methods 408, 1995, 184, 39-51.

    QR CODE