簡易檢索 / 詳目顯示

研究生: 范建欽
Jian-Qin Fan
論文名稱: I-II-IV-VI族奈米晶體合成
Synthesis of I-II-IV-VI Group Nanocrystal
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 江志強
Jyh-Chiang Jiang
楊正憲
Jheng-Sian Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 90
中文關鍵詞: 奈米晶體I-II-IV-VI族熱注射
外文關鍵詞: nanpcrystal, I-II-IV-VI Group, hot inject
相關次數: 點閱:192下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中,我們利用熱注射法去合成出可調控能隙大小的 Cu2ZnSn(SxSe1-x)4 奈米晶體,在本文中,我們將金屬硬酯酸均勻的溶解在油胺中並且注入於另外一個以辛稀為溶劑的高溫陰離子溶液中,升溫至適當的溫度進行成長反應。然而,辛稀是一種低成本、低毒性、在空氣中具備高穩定性之溶
    劑,因此我們選用此為我們的溶劑。油胺,同時具備了活化前驅物溶液以及當作奈米晶體合成時所需的表面配體。而我們可藉由調控不同的硫脲以及硒粉去控制其Cu2ZnSn(SxSe1-x)4 奈米晶體的成分比例,將硒含量提高會造成晶格常數 a 和 c以線性的方式增加,此趨勢符合了維軋定律。我們也利用了拉曼散射原理去證實了當 x 降低時會造成特徵峰往低頻率的方向位移,當 x= 0時,原本的特徵峰消失轉變成Cu2ZnSnSe4之特徵峰。另外可由可見光/紫外光吸收光譜得之,當我們調控不同的硫/硒比例時,可調整我們奈米材料之能隙值大小,並且藉由維軋定律去計算出其材料之能隙值,而結論出來確實符合其理論值,最後,利用X光繞射圖譜以及X射線光電子能譜儀去驗證其Cu2ZnSn(SxSe1-x)4之晶格結構以及原子鍵結情況,確實符合Cu2ZnSn(SxSe1-x)4晶格結構以及鍵結情形。本研究出之奈米晶體擁有了對於非極性溶劑有著高分散性以及高穩定性,在未來,應用於各種光電元件上,具備了其他材料無法取代之優勢。


    In this study, we demonstrate that Cu2ZnSn(SxSe1-x)4 nanocrystals with a tunable bandgap could be synthesized by a “hot-injection” protocol. In this protocol, metal stearates dissolved in oleylamine were injected into a hot solution of anion precursors in 1-octadecene (ODE) at a given reaction temperature. ODE, which is a low-cost, low-hazard, and air-stable liquid, was used as the solvent. Oleylamine was chosen as both the reagent to activate the precursors and as the capping agent for the nanocrystals. The composition of the Cu2ZnSn(SxSe1-x)4 nanocrystals could be adjusted across the x range from 0 to 1 by varying the S/Se reactant ratio. The lattice parameters (a and c) measured from X-ray diffraction patterns decreased linearly with increasing Se content. This trend was consistent with Vegard’s law, which confirmed the formation of homogeneous Cu2ZnSn(SxSe1-x)4 nanocrystals. The A1 symmetry modes of the Cu2ZnSn(SxSe1-x)4 nanocrystals seen by Raman spectroscopy gradually shifted with decreasing x (S content) to the lower frequency side and completely disappeared when x = 0. The absorption spectra of the Cu2ZnSn(SxSe1-x)4 nanocrystals revealed that the bandgaps of the nanocrystals could be adjusted over the range 1.0–1.5 eV by decreasing the S content. The relatively small value for the bowing parameter indicated that the synthesized Cu2ZnSn(SxSe1-x)4 nanocrystals had good miscibility.

    總 目 錄 第一章、序論..................................................................................................................1 1-1 前言...................................................................................................................1 1-2 研究動機與內容...............................................................................................2 第二章、理論基礎與文獻回顧......................................................................................3 2-1奈米晶體之基本特性........................................................................................3 2-1-1 小尺寸效應..............................................................…………...............3 2-1-2 表面效應………………………………….............................................5 2-1-3量子尺寸效應……………………………...............................................6 2-1-4量子穿隧效應……………………………...............................................7 2-1-5庫倫堵塞效應……………………………...............................................7 2-2奈米材料合成之相關知識…………...…….………........................................8 2-2-1 成核.....………………………………………….............................…...8 2-2-2 成長………..…………………………….........................................…11 2-2-3 表面配體................………………………….........................………..15 2-2-4 缺陷.......................................................................................................20 2-3 Cu2ZnSnS4 /Cu2ZnSnSe4 材料性質性質............................................................23 2-3-1太陽能電池之發展.................................................................................23 2-3-2 Cu2ZnSnS4之物理性質及結構............................................................26 2-3-3 Cu2ZnSnS4結構性質............................................................................28 2-3-4 Cu2ZnSnS4之製備方法........................................................................30 2-3-5 Cu2ZnSnSe4之物理性質及結構..........................................................34 2-3-6 Cu2ZnSnSe4之製備方法......................................................................37 第三章、實驗……………………………………………...............................…...…..40 3-1 實驗架構…………………………………………………...….…….............40 3-2 實驗藥品……………………………………...............……………….…….41 3-3 實驗儀器…………………………………………………...............…….….44 3-4 實驗步驟…………………………………………………….........................47 3-4-1 Cu2ZnSn(SxSe1-x)4奈米晶體合成……………….................…......…...47 3-5 樣品分析……...........………………....…...............................…………..….48 第四章、結果與討論………………..…………………….............................…...…..56 4-1 Cu2ZnSn(SxSe1-x)4 奈米晶體…………………..................................56 4-1-1 Cu2ZnSn(SxSe1-x)4 合成機制……………………….................…….57 4-1-2 Cu2ZnSn(SxSe1-x)4 之溫度調整...........……………….............…......58 4-1-3 Cu2ZnSn(SxSe1-x)4之反應時間之調控....……….………...…...........60 4-1-4 Cu2ZnSn(SxSe1-x)4 表面配位基之選擇............…………..................62 4-1-5 Cu2ZnSn(SxSe1-x)4 比例調控..............................................................64 4-1-6 Cu2ZnSn(SxSe1-x)4 之材料鑑定......................................................... 67 4-1-7 Cu2ZnSn(SxSe1-x)4 之晶格參數..........................................................69 4-1-8 Cu2ZnSn(SxSe1-x)4 之光學性質..........................................................72 4-1-9 Cu2ZnSn(SxSe1-x)4之鍵結情形...........................................................74 4-1-10 Cu2ZnSn(SxSe1-x)4之材料鑑定...........................................................77 4-1-11 Cu2ZnSn(SxSe1-x)4之成份鑑定...........................................................79 4-1-12 Cu2ZnSn(SxSe1-x)4之穩定性..............................................................81 第五章、結論和未來展望……………………………….......................................….83 5-1 結論....................................………………………..............................……...83 5-2 未來展望………………………..........................................................……...83 參考文獻…………………………………………….....................................……….84

    1. C.-M. Lai and S.-L. Lee, The Chinese Chem. Soc., 2003, 61, 585.
    2. Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem. Int. Ed., 2009, 48, 60.
    3. Y. C. quasi, Phys. Bimonthly, 2010, 32, 119.
    4. A. R. Tao, S. Habas and P. Yang, Small, 2008, 4, 310.
    5. S. Kumar and T. Nann, Small, 2006, 2, 316.
    6. Y. Y. Diao and X. Y. Liu, Adv. Funct. Mater., 2012, 22, 1354.
    7. C. J. DeSantis, A. C. Sue, M. M. Bower and S. E. Skrabalak, Acs Nano, 2012, 6, 2617.
    8. Y.-w. Jun, J.-H. Lee, J.-s. Choi and J. Cheon, J. Phys. Chem. B, 2005, 109, 14795.
    9. S.-M. Lee, Y.-w. Jun, S.-N. Cho and J. Cheon, J. Am. Chem. Soc., 2002, 124, 11244.
    10. L. Manna, E. C. Scher and A. P. Alivisatos, J. Am. Chem. Soc., 2000, 2000, 12700.
    11. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, Natuer, 2000, 404, 59.
    12. Z. A. Peng and X. Peng, J. Am. Chem. Soc., 2001, 123, 1389.
    13. X. Peng, Adv. Mater., 2003, 15, 459.
    14. S.-M. Lee, S.-N. Cho and J. Cheon, Adv. Mater., 2003, 15, 441.
    15. D. V. Talapin, J.-S. Lee, M. V. Kovalenko and E. V. Shevchenko, Chem. Rev., 2010, 110, 389.
    16. W. Zhang, Y. Li, H. Zhang, X. Zhou and X. Zhong, Inorg. Chem., 2011, 50, 10432.
    17. G. Kalyuzhny and R. W. Murray, J. Phys. Chem. B, 2005, 109, 7012.
    18. C. Bullen and P. Mulvaney, Langmuir, 2006, 22, 3007.
    19. A. L. W. II and G. F. Strouse, J. Am. Chem. Soc., 2008, 130, 8916.
    20. E. Talgorn, E. Moysidou, R. D. Abellon, T. J. Savenije, A. Goossens, A. J. Houtepen and L. D. A. Siebbeles, J. Phys. Chem. C, 2010, 114, 3441.
    21. S. Liu, H. Zhang, Y. Qiao and X. Su, RSC Adv., 2012, 2, 819.
    22. G. Zhai, A. Bezryadina, A. J. Breeze, D. Zhang, G. B. Alers and S. A. Carter, Appl. Phys. Lett., 2011, 99, 63512.
    23. C.-Y. Kuo, M.-S. Su, C.-S. Ku, S.-M. Wang, H.-Y. Lee and K.-H. Wei, J. Mater. Chem., 2011, 21, 11605.
    24. J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson and A. J. Nozik, Nano Lett., 2008, 8, 3488.
    25. D. Yu, C. Wang and P. Guyot-Sionnest, Science, 2003, 300, 1277.
    26. D. Yu, C. Wang, B. L. Wehrenberg and P. Guyot-Sionnest, Phys. Rev. Lett., 2004, 92, 216802.
    27. G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, Sean Hinds, A. G. Pattantyus-Abraham and E. H. Sargent, Acs Nano, 2008, 2, 833.
    28. C. Jiang, J. S. Lee and D. V. Talapin, J.Am.Chem.Soc., 2012, 134, 5010.
    29. M. V, Kovalenko, M. Scheele and D. V. Talapin, Science, 2009, 324, 1417.
    30. M. V. Kovalenko, M. I. Bodnarchuk, J. Zaumseil, J.-S. Lee and D. V. Talapin, J.Am.Chem.Soc., 2010, 132, 10085.
    31. D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline and A. G. Schrott, Adv. Mater., 2008, 20, 3657.
    32. D. B. Mitzi, L. L. Kosbar, C. E. Murray, M. Copel and A. Afzali, Nature, 2004, 428, 299.
    33. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, Res. Appl., 2008, 16, 235.
    34. S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas and B. E. Hammons, Appl. Phys. Lett., 1999, 74, 729.
    35. J. Klaery, J. Bruns, R. Henninger, K. Siemer, R. Klenk and K. Ellmer, Semicond. Sci. Technol, 1998, 13, 1456.
    36. D. Cahen and R. Noufi, Appl. Phys. Lett., 1989, 54, 558.
    37. H. Yokota, K. Okazaki, K. Shimura, M. Nakayama and D. Kim, J. Phys. Chem. C, 2012, 116, 5456.
    38. A. B. Djurišić, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen and S. Gwo, Appl. Phys. Lett., 2006, 88, 103107.
    39. M. Corricelli, F. Enrichi, D. Altamura, L. De Caro, C. Giannini, A. Falqui, A. Agostiano, M. L. Curri and M. Striccoli, J. Phys. Chem. C, 2012, 116, 6143.
    40. 嵇天浩, 孫家跃 和 杜海燕, 科學出版社,台灣, 2008.
    41. 李春穎, 材料科學與工程,美商麥格羅•希爾國際股份有限公司。.
    42. 劉國雄編撰, 全華科技圖書股份有限公司,臺灣, 2006.
    43. U. Gangopadhyay, K. Kim, D. Mangalaraj and J. Yi, Appl. Surf. Sci., 2004, 230, 364.
    44. A. Ebong, I. B. Cooper, B. Rounsaville, K. Tate, A. Rohatgi, B. Bunkenburg, J. Cathey, S. Kim and D. Ruf, Res. Appl., 2010, 18, 590.
    45. M. Michelle, R. Bernd, J. Wolfgang, K. Radovan and F. Peter, IEEE, 2006.
    46. M. Lipiński, P. Panek, Z. Świątek, E. Bełtowska and R. Ciach, Sol. Energy Mat. Sol. C. , 2002, 72, 271.
    47. C. J. J. Tool, P. Manshanden, A. R. Burgers and A. W. Weeber, Sol. Energy Mat. Sol. C. , 2006, 90, 3165.
    48. P. P. Boix, Y. H. Lee, F. Fabregat-Santiago, S. H. Im, I. Mora-Sero, J. Bisquert and S. I. Seok, Acs Nano, 2011, 6, 873.
    49. F. Ambrosio, N. Martsinovich and A. Troisi, J. Phys. Chem. C, 2012, 116, 2622.
    50. K. Do, D. Kim, N. Cho, S. Paek, K. Song and J. Ko, Org. Lett., 2012, 14, 222.
    51. S. S. Lee, M. J. Kong and S. F. Bent, J. Phys. Chem., 1996, 100, 20015.
    52. J. Zheng, X. Song, X. Li and Y. Pu, J. Phys. Chem. C, 2008, 112, 27.
    53. M. M. Adachi, M. P. Anantram and K. S. Karim, Nano Lett., 2010, 10, 4093.
    54. P. Sana, A. Rohatgi, J. P. Kalejs and R. O. Bell, Appl. Phys. Lett., 1994, 64, 97.
    55. Y.-R. Lin, C.-W. Chang, Y.-H. Chen, J.-C. Liu and C.-Y. Kung, CrystEngComm, 2010, 12, 1388.
    56. W.-C. Kwak, T. G. Kim, W. Lee, S.-H. Han and Y.-M. Sung, J. Phys. Chem. C, 2009, 113, 1615.
    57. B. Sun, Y. Hao, F. Guo, Y. Cao, Y. Zhang, Y. Li and D. Xu, J. Phys. Chem. C, 2012, 116, 1395.
    58. S. H. Kang, K. Zhu, N. R. Neale and A. J. Frank, Chem. Commun., 2011, 47, 10419.
    59. C. H. Lai and P. T. Chou, Chem. Commun., 2011, 47, 3448.
    60. S. Kwon, M. Shim, J. I. Lee, T.-W. Lee, K. Cho and J. K. Kim, J. Mater. Chem., 2011, 21, 12449.
    61. L. Zhang, E. Shi, Z. Li, P. Li, Y. Jia, C. Ji, J. Wei, K. Wang, H. Zhu, D. Wu and A. Cao, Phys. Chem. Chem. Phys., 2012, 14, 3583.
    62. S. Zhang, P. W. Cyr, S. A. McDonald, G. Konstantatos and E. H. Sargent, Appl. Phys. Lett., 2005, 87, 233101.
    63. T. Song, F. Zhang, X. Lei, Y. Xu, S. Lee and B. Sun, Nanoscale, 2012, 4, 1336.
    64. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargent, Nat. Mater., 2005, 4, 138.
    65. J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao and K. Yu, Acs Appl. Mater. Inter., 2011, 3, 553.
    66. K. S. Leschkies, T. J. Beatty, M. S. Kang, D. J. Norris and E. S. Aydil, Acs Nano, 2009, 3, 3638.
    67. J. J. Choi, Y.-F. Lim, M. E. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. c. D. Abrun, F. W. Wise and T. Hanrath, Nano Lett., 2009, 9, 3749.
    68. G. Zhang, S. Finefrock, D. Liang, G. G. Yadav, H. Yang, H. Fang and Y. Wu, Nanoscale, 2011, 3, 2430.
    69. F. Camacho-Alanis, L. Wu, G. Zangari and N. Swami, J. Mater. Chem., 2008, 18, 5459.
    70. A. A. Toropov, V. A. Solov'ev, B. Y. Mel'tser, Y. V. Terent'ev, R. N. Kyutt, A. N. Semenov, S. V. Ivanov, P. S. Kop'ev, Motlan and E. M. Goldys, J. Mater. Chem., 2002, 12, 309.
    71. A. De Vrieze, K. Strubbe, W. P. Gomes, S. Forment and R. L. Van Meirhaeghe, Phys. Chem. Chem. Phys., 2001, 3, 5297.
    72. D. Schmid, M. Ruckh and H. W. Schock, Sol. Energy Mat. Sol. C. , 1996, 42, 281.
    73. W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey and O. Gunawan, J. Am. Chem. Soc., 2010, 22, 1010.
    74. S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger and A. F. Hepp, Chem. Mater., 2003, 15, 3142.
    75. L. Zhang, J. Liang, S. Peng, Y. Shi and J. Chen, Mater. Chem. Phys., 2007, 106, 296.
    76. H. Chen, S. M. Yu, D. W. Shin and J. B. Yoo, Nanoscale Res. Lett., 2009, 5, 217.
    77. M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas and R. Noufi, Prog. PhotoVoltaics Res. Appl., 2005, 13, 209.
    78. D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov and D. B. Mitzi, Prog. Photovolt: Res. Appl., 2012, 20, 6.
    79. Y. Zhao and C. Burda, Energy Environ. Sci., 2012, 5, 5564.
    80. H. Yang, L. A. Jauregui, G. Zhang, Y. P. Chen and Y. Wu, Nano Lett., 2012, 12, 540.
    81. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang and S. Guha, Sol. Energy Mat. Sol. C. , 2011, 95, 1421.
    82. M. Muniz-Miranda, M. Pagliai, F. Muniz-Miranda and V. Schettino, Chem Commun, 2011, 47, 3138.
    83. A. Singh, H. Geaney, F. Laffir and K. M. Ryan, J.Am.Chem.Soc., 2012, 134, 2910.
    84. J.-J. Wang, J.-S. Hu, Y.-G. Guo and L.-J. Wan, Nature, 2012, 4, 1.
    85. M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, E. Ye, S. Chen, Q.-H. Xu and M.-Y. Han, Chem.-Eur. J. , 2012, 18, 3127.
    86. C. Platzer-Björkman, J. Scragg, H. Flammersberger, T. Kubart and M. Edoff, Sol. Energy Mat. Sol. C. , 2012, 98, 110.
    87. J. P. Leitão, N. M. Santos, P. A. Fernandes, P. M. P. Salomé, A. F. da Cunha, J. C. González, G. M. Ribeiro and F. M. Matinaga, Phys.Rev.B, 2011, 84, 24120.
    88. Chory, Christine, Zutz, Folker, Witt, Florian, Borchert, Holger, Parisi and Juergen, Phys.Stat.Sol.C, 2010, 7, 1486.
    89. H. Katagiri, N. Sasaguchi, Shima Hando, S. Hoshino, J. Ohashi and T. Yokota, Sol. Energy Mat. Sol. C. , 1997, 49, 407.
    90. L. Shi, C. Pei, Y. Xu and Q. Li, J. Am. Chem. Soc., 2011, 133, 10328.
    91. Y. B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar and V. Sundara Raja, Sol. Energy Mater. Sol. C., 2009, 93, 1230.
    92. N. Kamoun, H. Bouzouita and B. Rezig, Thin Solid Films, 2007, 515, 5949.
    93. K. Tanaka, N. Moritake and H. Uchiki, Sol. Energy Mat. Sol. C. , 2007, 91, 1199.
    94. K. Tanaka, M. Oonuki, N. Moritake and H. Uchiki, Sol. Energy Mat. Sol. C. , 2009, 93, 583.
    95. Miyamoto, Yusuke, Tanaka, Kunihiko, Oonuki, Masatoshi, Moritake, Noriko, Uchiki and Hisao, Jpn. J. Appl. Phys., 2008, 47, 596.
    96. K. Tanaka, N. Moritake, M. Oonuki and H. Uchiki, Jpn. J. Appl. Phys., 2008, 47, 598.
    97. K. Ramasamy, M. A. Malik and P. O'Brien, Chem. Sci. , 2011, 2, 1170.
    98. T. Washio, T. Shinji, S. Tajima, T. Fukano, T. Motohiro, K. Jimbo and H. Katagiri, J. Mater. Chem., 2012, 22, 4021.
    99. F. Jiang, H. Shen, W. Wang and L. Zhang, Appl. Phys. Express, 2011, 4, 74101.
    100. K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi and S. Guha, Appl. Phys. Lett., 2010, 97, 143508.
    101. T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo and H. Ogawa, phys. stat. sol., 2006, 3, 2844.
    102. Q. Guo, G. M. Ford, W.-C. Yang, B. C. Walker and E. A. Stach, J. Am. Chem. Soc., 2010, 132, 17384.
    103. J. Wang, X. Xin and Z. Lin, Nanoscale, 2011, 3, 3040.
    104. Q. Guo, G. M. Ford, W.-C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse and R. Agrawal, J.Am.Chem.Soc., 2010, 132, 17384.
    105. M. Wei, Q. Du, D. Wang, W. Liu, G. Jiang and C. Zhu, Mater.Lett., 2012, 79, 177.
    106. S. C. Riha, B. A. Parkinson and A. L. Prieto, J. Am. Chem. Soc., 2009, 131, 12054.
    107. S. Chen, X. G. Gong, A. Walsh and S.-H. Wei, Appl. Phys. Lett., 2010, 96, 21902.
    108. S. Chen, J.-H. Yang, X. G. Gong, A. Walsh and S.-H. Wei, Phys. Rev. B 2010, 81, 245204.
    109. A. Walsh, S. Chen, S.-H. Wei and X.-G. Gong, Adv. Eng. Mater., 2012, 2, 400.
    110. W. Ki and H. W. Hillhouse, Adv. Eng. Mater., 2011, 1, 732.
    111. I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich and R. Noufi, Sol. Energy Mater. Sol. C., 2012, 101, 154.
    112. G. Suresh Babu, Y. B. Kishore Kumar, P. Uday Bhaskar and S. Raja Vanjari, Sol. Energy Mater. Sol. C., 2010, 94, 221.
    113. W. Liu, M. Wu, L. Yan, R. Zhou, S. Si, S. Zhang and Q. Zhang, Mater. Lett., 2011, 65, 2554.
    114. Y. Z. Li, X. D. Gao, C. Yang and F. Q. Huang, J. Alloy. Compd. , 2010, 505, 623.
    115. A. Shavel, J. Arbiol and A. Cabot, J. Am. Chem. Soc., 2010, 132, 4514.
    116. H. Wei, W. Guo, Y. Sun, Z. Yang and Y. Zhang, Mater. Lett., 2010, 64, 1424.
    117. S. C. Riha, B. A. Parkinson and A. L. Prieto, J.Am.Chem.Soc., 2009, 131, 12054.
    118. W. Haas, T. Rath, A. Pein, J. Rattenberger, G. Trimmel and F. Hofer, Chem.Comm., 2011, 47, 2050.
    119. M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara and B. A. Korgel, J. Am. Chem. Soc., 2008, 130, 16770.
    120. B. Koo, R. N. Patel and B. A. Korgel, J. Am. Chem. Soc., 2009, 131, 3134.
    121. F. J. Fan, B. Yu, Y. X. Wang, Y. L. Zhu, X. J. Liu, S. H. Yu and Z. Ren, J. Am. Chem. Soc., 2011, 133, 15910.
    122. M.-L. Liu, F.-Q. Huang, L.-D. Chen and I. W. Chen, Appl. Phys. Lett., 2009, 94, 202103.
    123. A. Singh, H. Geaney, F. Laffir and K. M. Ryan, J. Am. Chem. Soc., 2012, 134, 2910.
    124. J. Xu, C.-Y. Luan, Y.-B. Tang, X. Chen, J. A. Zapien, W.-J. Zhang, H.-L. Kwong, X.-M. Meng, S.-T. Lee and C.-S. Lee, Acs Nano, 2010, 4, 6064.
    125. S. K. Batabyal, L. Tian, N. Venkatram, W. Ji and J. J. Vittal, J. Phys. Chem. C, 2009, 113, 15037.
    126. X. Lu, Z. Zhuang, Q. Peng and Y. Li, Chem. Commun., 2011, 47, 3141.
    127. F. Shieh, A. E. Saunders and B. A. Korgel, The Journal of Physical Chemistry B, 2005, 109, 8538-8542.
    128. S. Kumar and T. Nann, Small, 2006, 2, 316-329.

    無法下載圖示 全文公開日期 2017/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE