簡易檢索 / 詳目顯示

研究生: 蘇立楓
Li-fong Su
論文名稱: 高效能綠製程CuInS2量子點敏化太陽能電池
Efficient “Green”CuInS2 Quantum Dot-Sensitized Solar Cell
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 楊正憲
Jheng-Sian Yang
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 101
中文關鍵詞: 量子點敏化太陽能電池鈍化層量子點量子點敏化劑綠色能源
外文關鍵詞: QD-sensitized solar cells, passivation layer, CuInS2, ZnSe, CuInS2 Quantum Dot-Sensitized Solar Cell
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今人類處於能源匱乏之世界中,如何開發並有效利用之再生能源為刻不容緩之研究課題,此時此刻正是太陽能發電崛起的時代,各類型的太陽能研發與應用之種子正在世界各地萌芽,在本研究中主要以第三代太陽能電池為研究重心,由於半導體奈米材料晶體的興起,改變了第三代太陽能電池亦稱染料敏化太陽能電池之敏化結構,由理論推導發現以奈米半導體材料量子點做為敏化劑可大幅提升其太陽能電池之理論效率,因此誕生了新一代的敏化太陽能電池“量子點敏化太陽能電池”,目前文獻上以半導體奈米材料量子點做為敏化劑較高效率之敏化太陽能電池大部分以CdS、CdSe…..等等含有重金屬之量子點做為敏化劑,由於在電池元件的製作過程中使用到的重金屬元素不管在生產過程或廢棄電池的處理可能會造成環境的污染,從某個角度看來並不符合綠色能源之標準,因此本研究以對大自然環境無害之CuInS2量子點做為敏化劑,在研究中提出以Cu2S奈米材料做為緩衝層,並選擇ZnS做為CuInS2量子點敏化太陽能電池之鈍化層有效提高CuInS2量子點敏化太陽能電池之效率,最後以Cu2S/CuInS2(6)/ZnSe(3)之敏化結構測量所得到之光電轉換效率高達2.52 %、短路電流Jsc為10.96 mA/cm2、開路電壓Voc為604 mV、填充因子FF為 0.4,並在整個電池元件之製做過程中並未使用會對環境造成嚴重危害之重金屬元素,再加上第三代太陽能電池本身在發電成本較其它太陽能電池具有極大之優勢,因此實驗所研究之CuInS2量子點敏化太陽能電池可說是集環保、無毒、低成本於一身之太陽能電池,為真正符合綠色能源之概念的太陽能電池。


    Here, we describe QD-sensitized solar cells consisting of a CuInS2 sensitizer with a buffer layer (Cu2S) and a passivation layer (ZnSe), fabricated by using the successive ionic-layer adsorption and reaction (SILAR) process. A schematic diagram of the Cu2S–CuInS2–ZnSe QD-sensitized solar cell with cascaded energy gap structures that benefit from the separation of excited electrons and holes across the interfacial region. TiO2 films were prepared by screen printing of a TiO2 slurry on FTO glass. As a buffer layer, Cu2S with a bulk band gap of 1.2 eV was deposited on the TiO2 film before the deposition of CuInS2 to improve the unmatched band alignments between TiO2 and CuInS2 and to reduce the density of electron trap states at the TiO2 surface. By using the SILAR process, a thin layer of CuInS2 QDs was uniformly coated on the surface of the Cu2S to act as a light absorber. Subsequently, the CuInS2 surface was passivated with a wider band gap semiconductor (ZnSe, 2.7 eV) to prevent the leakage of current from QDs to the electrolyte. Under illumination, a CuInS2 QD absorbs a photon and an electron is excited from a valence band to a conduction band.This is followed by electron injection to the TiO2 conduction band, after which the photogenerated holes in CuInS2 QDs will be scavenged by sulfide/polysulfide (S2-/Sx2-) electrolytes.

    摘要 I Abstract II 謝誌 III 總目錄 IV 圖目錄 VII 表目錄 X 第一章. 緒論 1 1-1 前言 1 1-2 太陽能電池發展現況 2 1-3 研究目的與動機 5 第二章. 文獻回顧 7 2-1 染料敏化太陽能電池 (Dye-Sensitized Solar Cell, DSSC) 7 2-1.1 DSSC起源及發展 7 2-1.2 DSSC之工作原理 8 2-1.3 DSSC組件簡介 10 2-2 二氧化鈦奈米材料與染料 13 2-2.1 二氧化鈦(TiO2) 13 2-2.2 染料(Dye) 14 2-3 量子點敏化太陽能電池 (QD-sensitized dye solar cells, QDSSCs) 16 2-3.1 QDSSs起源 17 2-3.2 半導體奈米材料量子點 18 2-3.3 量子點特性介紹 20 2-3.4 量子點的製備與沉積 24 2-4 QDSSCs發展 31 2-4.1 QDSSCs近期文獻摘要 32 2-4.2 QDSSCs工作原理 34 2-4.3 量子點在QDSSCs之應用 35 第三章. 實驗技術與原理 48 3-1 實驗藥品與器材 48 3-2 實驗流程 51 3-3 FTO與ITO玻璃基板清洗 52 3-4 光電極(Photo Electrode)之二氧化鈦薄膜製備 52 3-5 染料與量子點沉積 54 3-5.1 染料配製與浸泡 54 3-5.2 Cu2S 緩衝層(Buffer Layer)沉積 55 3-5.3 CuInS2量子點沉積 55 3-5.4 ZnS 與 ZnSe 鈍化層(Passivation Layer)沉積 56 3-6 電解液製備 57 3-6.1 I-/I3-電解液製備 57 3-6.2 Polysulfide電解液製備 58 3-6.3 白金對電極製作 58 3-7 DSSC與QDSC之電池組裝 58 3-8 原子力顯微鏡 (Atomic Force Microscope ,AFM) 59 3-9 紫外光-可見光吸收光譜儀 (UV-Vis Spectroscopy) 61 3-10 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 62 3-11 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 63 3-12 太陽電池光電轉換效率分析 64 3-12.1 光電轉換效率分析 64 3-12.2 入射光電轉換效率( Incident photon to charge carrier efficiency, IPCE)分析 67 3-13 電化學阻抗分析 (Electrochemical impedance spectroscopy, EIS) 68 3-14 X射線光電子能譜儀 (X-ray photoelectron Spectroscope, XPS) 69 第四章. 實驗結果與討論 71 4-1 染料敏化太陽能電池原型效率分析 71 4-2 二氧化鈦與量子點薄膜之表面分析 74 4-2.1 二氧化鈦與量子點薄膜表面形態分析 73 4-2.2 二氧化鈦與量子點薄膜表面化學元素分析 75 4-3 CuInS2沉積機制與太陽能電池元件之光電性質分析 79 4-3.1 CuInS2之沉積機制與IV曲線及效率分析 79 4-3.2 Cu2S緩衝層效能分析 80 4-3.3 Cu2S/CuInS2之太陽能電池元件光電性質分析 82 4-3.4 ZnS與ZnSe鈍化層之電池元件光電性質分析 84 4-3.5 各敏化條件之光電性質分析與探討 86 第五章. 結論與未來展望 95 第六章. 參考文獻 97

    1. M. Grätzel, Nature, 1999, 403, 363.
    2. B. O'Regan and M. Grätzel, Nature, 1991, 353, 737.
    3. W. Hoffmann, PVSEC, 2004.
    4. C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. G. tzel and M. Grätzel, Acsnano, 2009, 3, 3103.
    5. M. Grätzel, Philos Transact A Math Phys Eng Sci, 2007, 365, 993.
    6. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Science, 2011, 334, 629.
    7. S.-W. Rhee and W. Kwon, Korean Chem. Eng. J., 2011, 28, 1481.
    8. R. G. Gordon, Mrs Bulletin/August, 2000.
    9. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, Sol. Energ. Mat. Sol. C., 2000, 70, 85.
    10. K. Hara and H. Arakawa, Handbook of Photovoltaic Science and Engineering, 2003.
    11. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Lett., 2005, 6, 215.
    12. X. Feng, K. Zhu, A. J. Frank, C. A. Grimes and T. E. Mallouk, Angew Chem Int Ed Engl, 2012, 51, 2727.
    13. M. Yang, D. Kim, H. Jha, K. Lee, J. Paul and P. Schmuki, Chem Commun, 2011, 47, 2032.
    14. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, Nano Lett., 2011, 11, 3026.
    15. J.-Y. Liao, B.-X. Lei, Y.-F. Wang, J.-M. Liu, C.-Y. Su and D.-B. Kuang, Chem. Eur. J., 2011, 17, 1352.
    16. M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo and D. Y. Kim, Nanotechnology, 2004, 15, 1861.
    17. J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki and A. B. Walker, ACS nano, 2008, 130,13364.
    18. X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa and C. A. Grimes, Nano Lett., 2008, 8, 3781.
    19. J. N. Clifford, E. Palomares, M. K. Nazeeruddin, M. G. tzel, J. Nelson, X. Li, N. J. Long and J. R. Durrant, J. Am. Chem, 2003, 125, 475.
    20. L. Andrade, S. M. Zakeeruddin, M. K. Nazeeruddin, H. A. Ribeiro, A. Mendes and M. Grätzel, Chem.phys.chem., 2009, 10, 1117.
    21. A. S. Brown and M. Green, Physica E, 2002, 14, 96.
    22. I. N. Mora-Sero, S. Gime´Nez, F. Fabregat-Santiago, R. G. Mez, Q. Shen, T. Toyoda and J. Bisquert, J. Chem. Res., 2009, 42, 1848.
    23. S. Buhb, S. Itzhakov, E. Tauber, M. Shalom, I. Hod, T. Geiger, Y. Garini, D. Oron and A. Zaban, Acsnano, 2010, 4, 1293.
    24. L. M. Peter, K. G. U. Wijayantha, D. J. Riley and J. P. Waggett, J. Phys. Chem. B, 2003, 107, 8378.
    25. M. C. Hanna and A. J. Nozik, J. Appl.Phys., 100, 074510.
    26. J. Parrott, J. Phys. D: Appl. Phys, 1979, 12, 441.
    27. Y. Wang and N. Herron, J. Phys. Chem., 1991, 95, 525.
    28. W. W. Yu and X. Peng, Angew. Chem., 2002, 41, 2368.
    29. M. C. Hanna and A. J. Nozik, J. of Appl. Phys., 2006, 100, 074510
    30. Y. W. Jun, J. S. Choi and J. Cheon, Angew Chem Int Ed Engl, 2006, 45, 3414.
    31. A. J. Nozik, Inorg. Chem., 2005, 44, 6893.
    32. A. J. Nozik, Physica E, 2002, 14, 115..
    33. Y.-L. Lee and Y.-S. Lo, Adv.Funct. Mater., 2009, 19, 604.
    34. J. Y. Chang, L. F. Su, C. H. Li, C. C. Chang and J. M. Lin, Chem Commun, 2012, 48, 4848.
    35. G. Xu, S. Ji, C. Miao, G. Liu and C. Ye, J. Mater. Chem, 2012, 22, 4890.
    36. G. Zhu, L. Pan, H. Sun and Z. Sun, Proceedings of Shanghai International Nanotechnology Cooperation Symposium, 2011, 76.
    37. S. Kitada, E. Kikuchi, A. Ohno, S. Aramaki and S. Maenosono, Solid State Commun., 2009, 149, 1853.
    38. A. Zaban, O. I. Mic´ic, B. A. Gregg and A. J. Nozik, Langmuir : the ACS journal of surfaces and colloids, 1997, 14, 3153.
    39. J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin and M. Grätzel, Nano Lett., 2010, 10, 2609.
    40. Q. Shen, J. Kobayashi, L. J. Diguna and T. Toyoda, J. Appl.Phys., 2008, 103, 084304.
    41. Z. Liu, M. Miyauchi, Y. Uemura, Y. Cui, K. Hara, Z. Zhao, K. Sunahara and A. Furube, Appl. Phys. Lett., 2010, 96, 233107.
    42. S. H. Im, Y. H. Lee, S. I. Seok and S. W. Kim, Langmuir : the ACS journal of surfaces and colloids, 2010, 26, 18576.
    43. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen and G. Hodes, J. Photoch. Photobio. A., 2006, 181, 306.
    44. S. Gimenez, I. Mora-Sero, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gomez, L. J. Diguna, Q. Shen, T. Toyoda and J. Bisquert, Nanotechnology, 2009, 20, 295204.
    45. I. n. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem., 2005,128, 2385.
    46. I. Mora-Sero, S. Gimenez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gomez and J. Bisquert, Nanotechnology, 2008, 19, 424007.
    47. Y. J. Shen and Y. L. Lee, Nanotechnology, 2008, 19, 045602.
    48. J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang and R. S. Liu, Appl. Phys. Lett., 2009, 94, 153115.
    49. S. Corer and G. Hodes, J. Phys. Chem., 1994, 98, 5338.
    50. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. K, J. Am. Chem., 2007, 130, 4007.
    51. W. Lee, S. H. Kang, S. K. Min, Y.-E. Sung and S.-H. Han, Electrochemistry Commun., 2008, 10, 1579.
    52. G.-Y. Lan, Z. Yang, Y.-W. Lin, Z.-H. Lin, H.-Y. Liao and H.-T. Chang, J. Mater. Chem., 2009, 19, 2349.
    53. P. K. Santra and P. V. Kamat, J Am Chem Soc., 2012, 134, 2508.
    54. Z. Yang, C. Y. Chen, P. Roy and H. T. Chang, Chem. Commun ., 2011, 47, 9561.
    55. J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J. E. Moser, C. Yi, M. K. Nazeeruddin and M. Grätzel, Nature commun., 2012, 3, 631.
    56. S.-Q. Fan, B. Fang, J. H. Kim, J.-J. Kim, J.-S. Yu and J. Ko, Appl. Phys. Lett., 2010, 96, 063501.
    57. I. n. Robel, M. Kuno and P. V. Kamat, ACS nano, 2007, 129, 4136.
    58. V. Chakrapani, K. Tvrdy and P. V. Kamat, J. Am. Chem., 2009, 132,1228.
    59. P. Brown and P. V. Kamat, J. Am. Chem., 2008, 130, 8890.
    60. B. Farrow and P. V. Kamat*, ACS nano, 2009, 131, 11124.
    61. N. s. Guijarro, Q. Shen, S. Gime´nez, I. n. Mora-Sero, J. Bisquert, T. Lana-Villarreal, T. Toyoda and R. Go´mez, J. Phys. Chem. C, 2010, 114.
    62. J. Zhang, C. Tang and J. H. Bang, Electrochemistry Commun., 2010, 12, 1124.
    63. S. Hachiya, Y. Onishi, Q. Shen and T. Toyoda, J. Appl. Phys., 2011, 110, 054319.
    64. A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee and G. J. Wang, Electrochemistry Commun., 2010, 12, 1158.
    65. P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank and A. J. Nozik, J. Phys. Chem. B, 2006, 2006.
    66. H. J. Lee, P. Chen, S. J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel and M. K. Nazeeruddin, Langmuir : the ACS journal of surfaces and colloids, 2009, 25, 7602.
    67. W. Lee, S. K. Min, V. Dhas, S. B. Ogale and S.-H. Han, Electrochemistry Commun., 2009, 11, 103.
    68. P. Sudhagar, J. H. Jung, S. Park, Y.-G. Lee, R. Sathyamoorthy, Y. S. Kang and H. Ahn, Electrochemistry Commun., 2009, 11, 2220.
    69. H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel and M. K. Nazeeruddin, Nano Lett., 2009, 9,4221.
    70. Z. Yang and Huan-TsungChang, Sol. Energ.Mat. Sol.C., 2010, 94, 2046.
    71. G. P. Smestad, F. C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew and H. Takakura, Sol. Energ. Mat. Sol. C., 2008, 92, 371.
    72. S. Q. Fan, B. Fang, J. H. Kim, B. Jeong, C. Kim, J. S. Yu and J. Ko, Langmuir : the ACS journal of surfaces and colloids, 2010, 26, 13644.
    73. Z. Yang, C.-Y. Chen, C.-W. Liu, C.-L. Li and H.-T. Chang, Adv. energy mater, 2011,1, 259.
    74. Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, Phys Chem. Chem. Phys., 2011, 13, 4659.
    75. B. Fang, S. Q. Fan, J. H. Kim, M. S. Kim, M. Kim, N. K. Chaudhari, J. Ko and J. S. Yu, Langmuir : the ACS journal of surfaces and colloids, 2010, 26, 11238.
    76. S. Ruhle, M. Shalom and A. Zaban, Chemphyschem : a European journal of chemical physics and physical chemistry, 2010, 11, 2290.
    77. D. S. S. A.-T. Tham, W. Neumann, P. Schubert-Bischoff, C. Beilharz and K. W. Benz, Cryst. Res. Technol., 2001, 36, 303.
    78. I. Shin, H. Seo, M.-K. Son, J.-K. Kim, K. Prabakar and H.-J. Kim, Curr.Appl. Phys., 2010, 10, S422.
    79. A. Hofmann and C. Pettenkofer, Appl. Phys. Lett., 2011, 98, 113503.
    80. S.-H. Wei and A. Zunger, J. Appl. Phys., 1995, 78, 3846.
    81. X. Hu, Q. Zhang, X. Huang, D. Li, Y. Luo and Q. Meng, J. Mater.Chem., 2011, 21, 15903.
    82. L. S. Li, N. Pradhan, Y. Wang and X. Peng, Nano Lett., 4, 2261.

    無法下載圖示 全文公開日期 2017/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE