簡易檢索 / 詳目顯示

研究生: 簡有廷
You-ting Jian
論文名稱: I-III-VI族量子點製備與鑑定
Synthesis and Characterization of I-III-Ⅵ Group Quantum Dots
指導教授: 張家耀
Jia-yaw Chang
口試委員: 曾堯宣
Yao-hsuan Tseng
陳良益
Liang-yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 101
中文關鍵詞: 銅銦化硫銀銦化硫核殼結構
外文關鍵詞: CuInS2, AgInS2, Core/shell structure
相關次數: 點閱:414下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以化學溶膠法合成I-III-VI族與型態一(Type-I)核殼結構的量子點,進一步改質量子點表面的疏水性質。以紫外光/可見光吸收光圖譜、光激發螢光圖譜及載子生命量測系統分析量子點的光學性質,穿透式電子顯微鏡影像及X光繞射圖譜瞭解晶體結構。

      本研究以兩種形式控制能隙大小來改變量子點放光波長:(1) CuInS2系統下,能隙受到量子侷限效應影響,隨著粒徑變化而改變;(2) AgInS2系統下,混合不同比例的寬能隙材料ZnS,合成均相合金量子點Zn-AgInS2,進一步控制量子點的能隙大小。CuInS2隨著時間變化,放光波長紅位移,符合量子侷限效應現象,適度增加醋酸銦的比例可提高量子產率;ZnS-AgInS2隨著硝酸鋅比例上的增加,放光波長藍位移,確認能隙有變寬的趨勢,於x value≧0.6的前趨物製備時增加硝酸鋅至兩倍量,可提高量子產率。對於CuInS2以及ZnS-AgInS2兩種系統下量子產率升高,載子生命量測系統所測得lifetime有降低的趨勢,推測與電子電洞對的直接激發再結合有關。CuInS2及ZnS-AgInS2兩種系統皆以ZnS前趨物緩慢滴入的方式製備殼層,製備完成的CuInS2/ZnS及ZnS-AgInS2/ZnS皆發生放光波長藍位移的情形,初步判定為梯度合金結構,量子產率與lifetime皆有增加的趨勢,可能與表面侷域態有關。TEM影像無法直接確認核殼結構的形成,XRD可確認CuInS2/ZnS及ZnS-AgInS2/ZnS為黃銅礦與閃鋅礦結構之間。

    量子點表面修飾而能溶於水相中,修飾形式分別以MPA置換量子點表面配位劑,以及兩性高分子PMAO-PEG包覆量子點兩種。經由轉換效率值推算,PMAO-PEG以疏水作用力包覆量子點的方式,分散於水相中的量子點比MPA置換有較佳的效率值。


    In this paper, the I-III- VI group quantum dots and Type-I core/shell structure of quantum dots are prepared by chemical colloidal synthesis, and then modified the hydrophobic ligands on the surface to disperse quantum dot in aqueous solvents . To comprehend optical and crystal structure properties through UV-vis absorbance spectra, photoluminescence spectra, carrier lifetime analysis system, transmission electron microscopy pictures and X-ray diffraction spectra.

    In this research, two main techniques of changing the peak wavelength by control the energy gap of quantum dots : (1) In CuInS2 system, tuning of the energy gap with changes in the quantum dots size by quantum confinement effects ; (2) In AgInS2 system, AgInS2 is synthesised of homogeneous alloy ZnS-AgInS2 with mix different ratio of wide band gap semiconductor ZnS, to control the quantum dot energy gap. CuInS2 peak wavelength is red shift with time, it is consistent with quantum confinement effects, and then increase moderately in the fraction of indium acetate that can increase the quantum yield ; ZnS-AgInS 2 as the ratio of zinc nitrate increasing peak wavelength blue shift, confirmed the trend of the energy gap has widened.When the x value ≧ 0.6 of the precursor, the increase to twice the amount of zinc nitrate, can increase the quantum yield. For CuInS2 and ZnS-AgInS2, quantum yield under the two systems increased by carrier lifetime analysis system measured lifetime has decreased, suggesting that with band to band recombination. In the CuInS2 and ZnS-AgIn 2, the ZnS shell precursor solution is added dropwise by means of a syringe pump to complete the CuInS2/ZnS and ZnS-AgInS2/ZnS. Peak wavelength blue shift occurs all the circumstances, to announce that core/shell quantum dots are the gradient alloy structure. Quantum yield and lifetime is on the increase, the surface localized states may be relevant. TEM pictures can not directly confirm the formation of core/shell structure, XRD can confirm CuInS2/ZnS and ZnS-AgInS2/ZnS with between chalcopyrite and zinc blende sturcture.
    Quantum dots surface modification and can be dissolved in aqueous solvent. Two modified form of quantum dots, ligand exchange phase transfer replace hydrophobic with MPA, another is copolymer PMAO-PEG coated quantum dots. By the transfer efficiency, PMAO-PEG coat with hydrophobic interaction of the water-solute quantum dots are better than the efficiency of MPA replacement.

    總 目 錄 中文摘要........................................................................................................................I 英文摘要.......................................................................................................................II 總目錄..........................................................................................................................IV 表目錄........................................................................................................................VII 圖目錄.........................................................................................................................IX 第一章、序論..................................................................................................................1 1-1 前言...................................................................................................................1 1-2 研究動機與內容...............................................................................................2 第二章、理論基礎與文獻回顧......................................................................................3 2-1 奈米晶體之基本特性........................................................................................3 2-1-1 表面效應.............................................................................................3 2-1-2 尺寸效應.............................................................................................4 2-2 奈米晶體之量子侷限效應、放光機制與製備.................................................8 2-2-1 奈米晶體之能隙與侷限效應.............................................................8 2-2-2 奈米半導體晶體之載子躍遷機制.....................................................9 2-2-3 激子...................................................................................................11 2-2-4 缺陷...................................................................................................12 2-2-5 奈米結構的製備...............................................................................14 2-3 量子點發展、應用與文獻回顧........................................................................19 2-3-1 II-VI族...............................................................................................19 2-3-2 I-III-VI族...........................................................................................20 2-3-3 量子點水相改質...............................................................................22 V 2-3-4 量子點的應用...................................................................................24 第三章、實驗................................................................................................................31 3-1 實驗架構.......................................................................................................31 3-2 實驗藥品.......................................................................................................32 3-3 實驗儀器.......................................................................................................36 3-4 實驗步驟.......................................................................................................38 3-4-1 CuInS2 & CuInS2/ZnS........................................................................38 3-4-2 ZnS-AgInS2 & ZnS-AgInS2/ZnS.......................................................38 3-4-3 量子點的水相改質...........................................................................40 3-5 樣品分析.......................................................................................................41 第四章、結果與討論....................................................................................................46 4-1 CuInS2 & CuInS2/ZnS...................................................................................46 4-1-1 CuInS2 之溫度-時間為參數的調整..................................................46 4-1-2 CuInS2 之硫醇為參數的調整...........................................................47 4-1-3 CuInS2 之CuAc/In(Ac)3 比例為參數的調整....................................48 4-1-4 CuInS2/ZnS 之合成...........................................................................50 4-2 ZnS-AgInS2 & ZnS-AgInS2/ZnS..................................................................65 4-2-1 ZnS-AgInS2 之溫度參數的調整.......................................................65 4-2-1 ZnS-AgInS2 之不同螢光放光波長( x = 0.4~1.0 )之合成................66 4-2-3 ZnS-AgInS2 之調整前趨物各成份組成比例...................................67 4-2-4 ZnS-AgInS2 之Zn(NO3)3×2 不同放光波長(x=0.4~0.9)的合成.......69 4-2-5 ZnS-AgInS2/ZnS 之合成...................................................................70 4-3 量子點水相合成...........................................................................................90 4-3-1 氫硫基化合物置換...........................................................................90 VI 4-3-2 高分子披覆.......................................................................................91 第五章、結論................................................................................................................95 參考文獻......................................................................................................................97

    參考文獻
    1. 張立德, 奈米材料與奈米結構, 滄海書局 (2002)
    2. 林正華, 奈米科技全書 [觀察篇], 全華科技圖書股份有限公司 (2005)
    3. Ashoori R. C., Nature, 379, 413 (1996)
    4. Cai, W., Chen, X. Small, 3 (11), 1840-1854 (2007)
    5. 陳振平, Poly(fluorene-co-pyridine) / 金奈米顆粒之奈米複合材料的合成與性
    質分析, 國立交通大學 (2006)
    6. 張安華, 實用奈米技術, 新文京開發出版股份有限公司 (2005)
    7. 周靜怡, Ⅱ-Ⅵ族半導體奈米晶粒(量子點)之合成與光學性質分析, 國立交通
    大學 (2002)
    8. 蘇品書, 超微粒子材料技術, 復漢出版社 (1999)
    9. http://nano.mse.ttu.edu.tw/index1.html, 大同大學, 奈米科學教學網站
    10. Ryogo Kubo, Journal of the Physical Society of Japan, 17 (6), 975-986 (1962)
    11. Alivisatos, A. P., J. Phys. Chem., 100, 13226-13239. (1996)
    12. Vij, D. R., Singh, N., Luminescence and Related Properties of Ⅱ-Ⅵ
    Semiconductor, Nova Science Publishers, New York, (1988)
    13. Joseph H. Simmons, Kelly S. Potter., Optical Materials, Academic Press, San
    Diego (2000)
    14. Kitai, A. H., Solid State Luminescence, Chapman & Hall, New York (1993)
    15. Klaus D. Mielenz. Optical Radiation Measurements, Academic Press, New York
    (1982)
    16. Brus, L. E., J. Chem. Phys., 79, 5566-5571 (1983)
    17. Steigerwald, M. L., Brus, L. E., Acc. Chem. Res., 23, 183-188 (1990)
    18. http://www.scl.kyoto-u.ac.jp/~teranisi/research/Opt-e.html, Teranishi Lab.
    98
    19. 呂東原, 二六族化合物半導體量子結構之光學特性研究, 國立臺灣海洋大學
    (2005)
    20. 許哲豪, 單一硒化鎘/硫化鋅膠體量子點之螢光特性, 國立交通大學 (2006)
    21. Kissel, H. U., Muller, C. Walther, Maselink, W. T., Phys. Rev. B, 62, 7213
    (2000)
    22. Wan, J., Jin, G. L., Jiang, Z. M., Luo, Y. H., Appl. Phys. Lett, 78, 1763 (2001)
    23. Ehrhart, Properties and interactions of atomic defects in metals and alloys,
    volume 25 of Landolt-Börnstein, New Series III, chapter 2, page 88, Springer,
    Berlin (1991)
    24. Wikipedia, http://en.wikipedia.org/wiki/Exciton
    25. P. Ehrhart, Properties and interactions of atomic defects in metals and alloys,
    volume 25 of Landolt-Börnstein, New Series III, Berlin (1991)
    26. Volterra, V., Annales Scientifiques de l'École Normale Supérieure, 24, 401–517
    (1907)
    27. Amelinckx, S., Dislocation in Solids,Vol.2 ,Amsterdam, North-Holland (1979)
    28. W. F. Smith, 譯者:李春穎等, 材料科學與工程, 美商麥格羅.希爾國際股
    份有限公司
    29. Weber M. J., Laser Spectroscopy of Soilds, Springer-Verlag Berlin Neidelberg,
    New York, 49 ,189 (1981)
    30. http://researcher.nsc.gov.tw/public/higee/Attachment/13190513071.ppt, 長庚大
    學 (2004)
    31. Broewn, L. J., Trends, C. W., Anal. Chem., Cameron, D. C., Thin Solid Film,
    238, 83 (1994)
    32. Rogach, A. L., Kornowski, A., Eychmuller, A., Weller, H., Gao, M., Kirstein, S.,
    J. Phys. Chem. B, 103, 3065-3069 (1999)
    33. Cheon, J., Zink, J. I., J. Am. Chem. Soc., 119, 3838-3839 (1997)
    99
    34. He Y. B., Polity A., Alves H. R., Österreicher I., Kriegseis W., Pfisterer D.,
    Meyer B.K., Hardt M., Thin Solid Films, 403-404 62-65 (2002)
    35. Arakawa., Y., Sakaki, H., appl. Phys. Lett., 40, 939 (1982)
    36. Murray C. B., Norris DJ, Bawendi MG, J. Am. Chem. Soc., 8706–8715 (1993)
    37. Hines M. A.,Guyot-Sionnest, J. Phys. Chem., 100, 468–471 (1996)
    38. Dabbousi B. O., Rodriguez Viejo J., Mikulec F. V., Heine J. R., Mattoussi H.,
    Ober R., J. Phys. Chem. B ,101, 9463–9475 (1997)
    39. Peng X. G., Schlamp M. C., Kadavanich A. V., Alivisatos A. P., J. Am. Chem.
    Soc., 119, 7019–7029 (1997)
    40. Wei S. H., Zunger A., App. Phys. Lett., 72, 2011–2013 (1998)
    41. Li, J. J., Wang, Y. A., Guo, W., Keay, J. C., Mishima, T. D., Johnson, M. B., Peng,
    X. J., Am. Chem. Soc., 125, 12567 (2003)
    42. Park, S., Clark, B. L., Keszler, D. A., Bender, J. P., Wager, J. F., Reynolds, T. A.,
    Herman, G. S., Science, 297, 65, (2002)
    43. Peng, Z. A., Peng, X., J, Am. Chem. Soc. 123, 183 (2001)
    44. Barnham, K., Duggan, G., J. Appl. Phys. 67, 3490 (1990)
    45. Xie, R., Rutherford, M., Peng, X., J. Am. Chem. Soc., 131 (15), 5691-5697
    (2009)
    46. Castro, S. L., Bailey, S. G., Raffaelle, R. P., Banger, K. K., Hepp, A. F., Chem.
    Mater., 15, 3142 (2003)
    47. Nakamura, H., Kato, W., Uehara, M., Nose, K., Omata, T., Matsuo, S. O.,
    Miyazaki, M., Maeda, H. Chem. Mater., 18, 3330–3335 (2006)
    48. Torimoto, T., Ogawa, S., Adachi, T., Kameyama, T., Okazaki, K., Shibayama, T.,
    Kudo, A., Kuwabata, S., J. Am. Chem. Soc., 129 (41), 12388-12389 (2007)
    49. Torimoto, T., Ogawa, S., Adachi, T., Kameyama, T., Okazaki, K., Shibayama, T.,
    Kudo, A., Kuwabata, S., Chem. Comm. 46 (12), 2082-2084 (2010)
    100
    50. Li, L., Daou, T.J., Texier, I. Chi, T.T.K., Liem, N.Q., Reiss, P., Chem. Mater., 21
    (12), 2422-2429 (2009)
    51. Regulacio, M.D., Han, M.Y., Acc.Chem. Res., 43 (5), 621-630 (2010)
    52. Justin J. Nairn, Pamela J. Shapiro, Brendan Twamley; Tyler Pounds; Ray von
    Wandruszka, T. Rick Fletcher, Mark Williams, Chongmin Wang, and M. Grant
    Norton, Nano. Lett. 6 (6), 1218-1223 (2006)
    53. Gardner, J.S., Shurdha, E., Wang, C., Lau, L.D., Rodriguez, R.G., Pak, J.J., J.
    Nano. Res. 10 (4), 633-641 (2008)
    54. Omata, T., Nose, K., Otsuka-Yao-Matsuo, S. J. App. Phys. 105 (7), art. no.
    073106 (2009)
    55. Nose, K., Omata, T., J. Phys. Chem. C, 113 (9),3455-3460 (2009)
    56. Mitchell P., Nature Biotechnology, 19,1013 (2001)
    57. Sukhanova, A.; Devy, J.; Venteo, L.; Kaplan, H.; Artemyev, M.; Oleinikov, V.;
    Klinov, D.; Pluot, M.; Cohen, J.H.M.; Nabiev, I. Anal. Biochem. 324, 60-67
    (2004)
    58. Nie S. M., Warren, C. W., Science, 281, 2016-2018 (1998)
    59. Robin E. Anderson, Warren C. W. Chan, ACS Nano., 2(7) 1341-1352 (2008)
    60. Maureen A. Walling, Jennifer A. Novak, Jason R. E. Shepard, Int. J. Mol. Sci. 10,
    441-491 (2009)
    61. Parak, W. J., Pellegrino, T., Manna, L., Kudera, S., Liedl, T., Koktysh, D.,
    Rogach, A. L., Keller, S., Radler, J., Natile, G., Nano. Lett., 4, 703-707 (2004)
    62. Emma E. Lees, Tich-Lam Nguyen, Andrew H. A. Clayton, Paul Mulvaney, ACS
    Nano., 3(5) 1121–1128 (2009)
    63. 劉又榕, 量子點表面改質與生物分子的鍵結, 中原大學 (2005)
    64. Alivisates, A. P., Gerron, D., Pinaud, F., Williams, S. C., Parak, W. J., Zanchet,
    D., Weiss, S., J. Phys. Chem. B, 105, 8861-8871 (2001)
    101
    65. http://snl.bjmu.edu.cn/course/reviews/bitech/zhangwei.pdf, 北京大學 單分子
    與納米生物學實驗室
    66. 曾致翔, CdSeS三元量子點材料的製備與光學性質探討, 國立台灣科技大學
    (2009)
    67. Wikipedia, http://en.wikipedia.org/wiki/Ultrafast_laser_spectroscopy
    68. Kubin, R.F., Fletcher, A.N., Journal of Luminescence, 27 (4), 455-462 (1982)
    69. Ivanov, S.A., Piryatinski, A., Nanda, J., Tretiak, S., Zavadil, K.R., Wallace, W.O.,
    Werder, D., Klimov, V. I., Journal of the American Chemical Society, 129 (38),
    11708-11719 (2007)
    70. Zhong, H., Zhou, Y., Ye, M., He, Y., Ye, J., He, C., Yang, C., Li, Y., Chem. Mater.,
    20(20), 6434-6443 (2008)
    71. Penn, R.L., J. Phys. Chem. B, 108(34), 12707-12712 (2004)
    72. Uehara, M., Watanabe, K., Tajiri, Y.; Nakamura, H., Maeda, H. J., Chem. Phys.,
    129(13), 134709 (2008)
    73. Protière, M., Reiss, P., Small 3(3),399-403 (2007)
    74. Tsuji, I., Kato, H., Kobayashi, H., Kudo, A., J. Am. Chem. Soc. 126 (41),
    13406-13413 (2004)
    75. Lambrecht Jr., V.G., Materials Research Bulletin 7(12), 1411-1415 (1972)
    76. Olekseyuk, I.D., Halka, V.O., Parasyuk, O.V., Voronyuk, S.V., Journal of Alloys
    and Compounds, 325 (1-2), 204-209 (2001)
    77. Bridgette Blackman, David Battaglia, Xiaogang Peng, Chem. Mater., 20 (15),
    4847-4853 (2008)
    78. Yu, W.W., Chang, E., Falkner, J.C., Zhang, J., Al-Somali, A.M., Sayes, C.M.,
    Journal of the American Chemical Society, 129 (10), 2871-2879 (2007)

    無法下載圖示 全文公開日期 2015/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE