簡易檢索 / 詳目顯示

研究生: 陳鍾錡
Chung-Chi Chen
論文名稱: 硼摻雜石墨烯與金屬電極接面之光熱電效應
The Photo-thermoelectric Effect in the Contacts between Boron-doped Graphene and Metal Electrodes
指導教授: 周賢鎧
Shyankay Jou
口試委員: 黃柏仁
Bohr-Ran Huang
胡毅
Hu Yi
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 161
中文關鍵詞: 石墨烯硼摻雜石墨烯場效電晶體電場效應量測聚焦雷射激發光熱電效應量測
外文關鍵詞: graphene, boron-doped graphene, field-effect transistor, electric field-effect measurement, focus laser beam excitation, photo-thermoelectric effect measurement
相關次數: 點閱:301下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分為三部份,首先以Cu(B)薄膜作為硼摻雜來源,透過快速升溫化學氣相沉積系統(Rapid thermal chemical vapor deposition system, RTCVD)來成長出硼摻雜石墨烯(Boron-doped graphene, BG),並進一步優化製程參數與步驟來成長出品質優異的純石墨烯(Pristine graphene, PG)以比較兩者之性質差異。由SEM及拉曼光譜來比較製程調配結果,再由拉曼光譜、UV-vis光譜、XPS能譜以及SIMS質譜來分析兩者之材料特性。由拉曼光譜可以觀察到BG由於有硼摻雜進入石墨烯晶格中,造成晶格扭曲而使其缺陷較多。導致其D-band與D’-band的強度皆較高,2D-band則變寬且強度下降。搭配UV-vis光譜之穿透度結果推論PG為高品質單層石墨烯,而BG為多層硼摻雜石墨烯。XPS能譜與SIMS質譜之分析結果再次驗證了上述分析結果,並進一步提供了硼成功摻雜進入BG的證據。

    第二部份著重元件量測,將PG與BG應用於背閘極式石墨烯電晶體。在電性分析中確定了石墨烯與金屬電極為歐姆接觸,但量測出的電阻率明顯高於預期、載子遷移率亦明顯低於預期。同時亦無法透過閘極電壓掃描來獲得石墨烯之狄拉克點,結果呈現石墨烯有嚴重的p型摻雜。接續以聚焦雷射激發石墨烯通道中心、金屬電極與石墨烯接面處來量測光熱電效應。雷射的激發與否說明了元件對光有響應;而當由聚焦雷射以固定間距對石墨烯通道掃描時發現,在激發石墨稀通道與金屬電極接面處時,鈦銀電極接面處的通道電流會高於鋁電極接面處之通道電流,兩者之通道電流皆明顯高於僅激發石墨烯中心時的通道電流,證實在金屬電極與石墨烯接面處有光熱電效應產生。

    最後則對電晶體的製備作探討,希望由確保石墨烯品質與連續性、減少p型摻雜以及通道面積重新設計來增加電晶體的良率,以期量測出狄拉克點並應用於載子密度與賽貝克係數的計算。


    This study can be divided into three parts. Firstly, the Cu(B) thin film is used as a source of boron doping. Boron-doped graphene (BG) is grown by the rapid thermal chemical vapor deposition system (RTCVD), and the process parameters are further optimized to gain better quality graphene. Pristine graphene (PG) is used to compare the properties difference between the two. The results of the process renovation were checked by SEM and Raman spectroscopy, and the material properties of the graphene films were analyzed by Raman spectroscopy, UV-vis spectrometer, XPS, and SIMS. The results from Raman spectroscopy show that boron is doped into the graphene lattice due to boron doping, resulting in lattice distortion and more defects. Consequently, the intensity of both D-band and D'-band is higher, 2D-band is widened and the intensity is lowered. With the transmittance results of UV-vis spectra, PG is proven to be high-quality single-layer graphene, and BG is a multilayer boron-doped graphene. The analysis results of the XPS and SIMS verified the analysis results above and the evidence that boron was successfully doped into BG has been confirmed.

    The second part focuses on the device measurement, applying PG and BG to the back-gated graphene transistor. In the electrical analysis, the graphene and the metal electrodes were determined to be in ohmic contact, but the measured resistivity was significantly higher than expected, and the carrier mobility was also significantly lower than expected. At the same time, the Dirac point of graphene cannot be obtained by gate voltage sweeping, and the result shows that graphene has a heavy p-type doping condition. The photo-thermoelectric effect is measured by focusing the laser beam to excite the center of the graphene channel as well as the contacts between graphene and metal electrodes. The excitation of the laser beam indicates that the device is responsive to light; and when scanning the graphene channel at a fixed pitch with a focused laser beam, it is found that the channel current at the contact of the titanium/silver electrode and graphene is the highest. The channel current at the contact of the aluminum electrode and graphene is also higher than that of the channel current when only the graphene is excited. It is confirmed that a photo-thermoelectric effect occurs at the contacts between the metal electrodes and the graphene.

    Finally, the process of transistor fabrication is reviewed. It is hoped that the quality and continuity of the graphene, the reduction of the p-type doping and the channel area redesign will increase the yield of the transistor, in order to measure the Dirac point voltage and apply it to the calculations of carrier concentration and the Seebeck coefficient.

    摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 X 表目錄 XVI 第1章、 前言 1 1.1 石墨烯的起源與簡介 1 1.2 研究動機 3 第2章、 文獻回顧 4 2.1 石墨烯的結構及性質 4 2.2 石墨烯的製備方法 7 2.2.1 機械剝離法(Mechanical exfoliation) 7 2.2.2 磊晶成長法(Epitaxial growth) 8 2.2.3 氧化石墨烯還原法(Reduction of graphene oxide) 8 2.2.4 化學氣相沉積法(Chemical vapor deposition, CVD) 9 2.2.4.1 銅金屬觸媒成長石墨烯之機構 9 2.2.4.2 影響石墨烯成長及品質之參數 12 2.2.4.3 快速升溫化學氣相沉積法(Rapid Thermal Chemical Vapor Deposition, RTCVD) 16 2.3 石墨烯轉移 17 2.4 摻雜石墨烯 19 2.5 石墨烯電晶體製備及其電性量測 25 2.5.1 石墨烯電晶體之開關電流比值關係 28 2.5.2 氧化層電容與介電常數之關係 28 2.6 石墨烯之光熱電效應 29 第3章、 實驗儀器與實驗方法 40 3.1 實驗材料與藥品規格 40 3.2 實驗儀器及分析設備 42 3.3 實驗原理 43 3.3.1 化學氣相沉積系統(Chemical vapor deposition system, CVD) 43 3.3.2 微波電漿系統(Microwave plasma system, MWP) 43 3.3.3 磁控濺鍍系統(Magnetron sputtering system) 44 3.3.4 拉曼光譜顯微技術(Raman spectromicroscopy) 44 3.3.5 紫外光可見光光譜儀(Ultraviolet-visible spectrometer, UV-vis) 45 3.3.6 化學分析電子能譜儀(Electron spectroscopy for chemical analysis system, ESCA) 46 3.3.7 電晶體性質量測系統 47 3.3.8 二次離子質譜儀(Secondary ion mass spectrometer, SIMS) 49 3.4 實驗步驟 50 3.4.1 實驗步驟與分析 50 3.4.2 基板清洗 50 3.4.3 石墨烯成長 51 3.4.4 石墨烯轉移至特定基板 54 3.5 背閘極式石墨烯電晶體製備 56 3.5.1 電晶體元件及光罩設計 56 3.5.2 元件背閘極製備 57 3.5.3 圖案化微影製程 57 3.5.4 氧氣微波電漿蝕刻製程 61 3.5.5 金屬化薄膜濺鍍製程 61 3.5.6 舉離製程(Lift-off process) 62 3.5.7 元件退火製程與黃銅背板黏接 63 第4章、 研究結果與討論 64 4.1 純石墨烯與硼摻雜石墨烯之成長條件及性質探討 64 4.1.1 預處理對銅箔表面形貌的影響 64 4.1.2 拉曼光譜分析結果討論 67 4.1.3 UV-vis光譜穿透度結果討論 72 4.1.4 XPS能譜分析結果討論 73 4.1.5 SIMS質譜分析結果討論 82 4.2 石墨烯基背閘極式電晶體元件量測 92 4.2.1 電性量測分析與結果討論 92 4.2.2 光熱電效應之量測分析與結果討論 97 4.3 元件量測不如預期之原因探討 101 4.3.1 微影製程定位對準之問題 101 4.3.2 電晶體中石墨烯通道的品質 103 4.3.3 石墨烯通道之p型摻雜影響 106 4.3.4 定義石墨烯通道時電漿蝕刻的不足 109 4.3.5 汲極源極與背閘極導通之疑慮 112 4.3.6 石墨烯通道面積設計的影響 114 第5章、 結論 115 參考文獻 117 附錄 125

    1. A. K. Geim and K. S. Novoselov, ''The rise of graphene.'' Nature Materials, 2007, vol. 6, pp. 183-191.
    2. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, "The structure of suspended graphene sheets," Nature, 2007, vol. 446, pp. 60-63.
    3. M. C. Lemme, ''Current status of graphene transistors.'' Solid State Phenomena, 2010, vol. 156-158, pp. 499-509.
    4. P. C. Eng, S. Song, and B. Ping, ''State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength.'' Nanophotonics, 2015, vol. 4, pp. 277-302.
    5. M. I. Katsnelson, ''Graphene: carbon in two dimensions.'' Materials Today, 2007, vol. 10, pp. 1-2.
    6. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, ''The electronic properties of graphene.'' Reviews of Modern Physics, 2009, vol. 81(1), pp. 109-162.
    7. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils." Science, 2009, vol. 324(5932), pp. 1312-1314.
    8. C. Lee, X. Wei, J. W. Kysar and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene." Science, 2008, vol. 321(5887), pp. 385-392.
    9. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene." Nano Letters, 2008, vol. 8(3) pp. 902-907.
    10. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes." Nature, 2009, vol. 457(7230) pp. 706-715.
    11. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene." Solid State Communications, 2008, vol. 146(9) pp. 351-355.
    12. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, "Fine structure constant defines visual transparency of graphene." Science, 2008, vol. 320(5881) pp. 1308.
    13. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, "Electric field effect in atomically thin carbon films." Science, 2004, Vol. 306(5696) pp. 666-669.
    14. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, "Graphene based materials: Past, present and future." Progress in Materials Science, 2011, vol. 56(8) pp. 1178-1271.
    15. W. A. de Heer, C. Berger, X. Wu, M. Sprinkle, Y. Hu, M. Ruan, J. A. Stroscio, P. N. First, R. Haddon, B. Piot, C. Faugeras, M. Potemski and J. S. Moon, "Epitaxial graphene electronic structure and transport." Journal of Physics D: Applied Physics, 2010, Vol. 43(37) pp. 374007.
    16. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide." Carbon, 2007, vol. 45(7) pp. 1558-1565.
    17. C. Nethravathi and M. Rajamathi, "Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide." Carbon, 2008, vol. 46 pp. 1994-1998.
    18. X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang and F. Zhang, "Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation." Advanced Materials, 2008, vol. 20(23) pp. 4490-4493.
    19. P. R. Somani, S.P. Somani and M. Umeno, "Planer nano-graphenes from camphor by CVD." Chemical Physics Letters, 2006, vol. 430(1-3) pp. 56-59.
    20. X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo and R. S. Ruoff, "Graphene films with large domain size by a two-step chemical vapor deposition process." Nano Letters, 2010, vol. 10(11) pp. 4328-4334.
    21. W.J. Arnoult and R.B. McLellan, "The solubility of carbon in rhodium ruthenium, iridium and rhenium." Scripta Metallurgica, 1972, vol. 6(10) pp. 1013-1018.
    22. A. T. N’Diaye, S. Bleikamp, P. J. Feibelman and T. Michely, "Two-dimensional Ir cluster lattice on a graphene Moir'e on Ir(111)." Physical Review Letters, 2006, vol. 97(21) pp. 215501.
    23. M. Gao, Y. Pan, L. Huang, H. Hu, L. Z. Zhang, H. M. Guo, S. X. Du and H. J. Gao, "Epitaxial growth and structural property of graphene on Pt(111)." Applied Physics Letters, 2011, vol. 98(3) pp. 033101.
    24. X. Li, W. Cai, L. Colombo and R. S. Ruoff, "Evolution of graphene growth on Ni and Cu by carbon isotope labeling." Nano Letters, 2009, vol. 9(12) pp. 4268-4272.
    25. I. Mitchell and A. J. Page, "The influence of hydrogen on transition metal - Catalysed graphene nucleation." Carbon, 2018, vol. 128 pp. 215-223.
    26. K. Li, C. He, M. Jiao, Y. Wang, Z. Wu, "A first-principles study on the role of hydrogen in early stage of graphene growth during the CH4 dissociation on Cu(111) and Ni(111) surfaces." Carbon, 2014, vol. 74 pp. 255-265.
    27. J. Liu, S. P. Adusumilli, J. J. Condoluci, A. C. Rastogi, W. E. Bernier and W. E. Jones Jr. "Effects of H2 annealing on polycrystalline copper substrates for graphene growth during low pressure chemical vapor deposition." Materials Letters, 2015, vol. 153 pp. 132-135.
    28. A. Ibrahim, S. Akhtar, M. Atieh, R. Karnik and T. Laoui, "Effects of annealing on copper substrate surface morphology and graphene growth by chemical vapor deposition." Carbon, 2015, vol. 94 pp. 369-377.
    29. L. Gan and Z. Luo, "Turning off hydrogen to realize seeded growth of subcentimeter single-crystal graphene grains on copper." ACS Nano, 2013, vol. 7(10) pp. 9480-9488.
    30. K. Hayashi, S. Sato and N. Yokoyama, "Anisotropic graphene growth accompanied by step bunching on a dynamic copper surface." Nanotechnology, 2012, vol. 24(2) pp. 025603.
    31. S. Rha, W. Lee, S. Lee, D. Kim, C. Park and S. Chun, "Effects of the annealing in Ar and H2/Ar ambients on the microstructure and the electrical resistivity of the copper film prepared by chemical vapor deposition." Japanese Journal of Applied Physics, 1996, vol. 35 pp. 5781-5786.
    32. Z. Wang, G. Weinberg, Q. Zhang, T. Lunkenbein, A. Klein-Hoffmann, M. Kurnatowska, M. Plodinec, Q. Li, L. Chi, R. Schloegl and M. Willinger, "Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy." ACS Nano, 2015, vol. 9(2) pp. 1506-1519.
    33. J. Ryu, Y. Kim, D. Won, N. Kim, J. S. Park, E. Lee, D. Cho, S. Cho, S. J. Kim, G. H. Ryu, H. A. Shin, Z. Lee, B. H. Hong and S. Cho, "Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition." ACS Nano, 2014, vol. 8(1) pp. 950-956.
    34. B. Deng, Z. Liu and H. Peng, "Toward mass production of CVD graphene films." Advanced Materials, 2018, vol 31 pp. 1800996.
    35. G. B. Barina, Y. Song, I. F. Gimenez, A. G. S. Filho, L. S. Barreto and J. Kong, "Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance." Carbon, 2015, vol. 84 pp. 82-90.
    36. Y. Lin, C. Jin, J. Lee, S. Jen, K. Suenaga and P. Chiu, "Clean transfer of graphene for isolation and suspension." ACS Nano, 2011, vol. 5(3) pp. 2362-2368.
    37. A. P. Esser-Kahn, P. R. Thakre, H. Dong, J. F. Patrick, V. K. Vlasko-Vlasov, N. R. Sottos, J. S. Moore and S. R. White, "Three-dimensional microvascular fiber-reinforced composites." Advanced Materials, 2011, vol. 23(32) pp. 3654-3661.
    38. J. D. Wood, G. P. Doidge, E. A. Carrion, J. C. Koepke, J. A. Kaitz, I. Datye, A. Behnam, J. Hewaparakrama, B. Aruin, Y. Chen, H. Dong, R. T. Haasch, J. W. Lyding and E. Pop, "Annealing free, clean graphene transfer using alternative polymer scaffolds." Nanotechnology, 2015, vol. 26(5) pp. 055302.
    39. C. Su, A. Lu, C. Wu, Y. Li, K. Liu, W. Zhang, S. Lin, Z. Juang, Y. Zhong, F. Chen and L. Li, "Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition." Nano Letters, 2011, vol. 11(9) pp. 3612-3617.
    40. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils." Science, 2009, vol. 324(5932) pp. 1312.
    41. H. Lee, K. Paeng and I. S. Kim, "A review of doping modulation in graphene." Synthetic Metals, 2018, vol. 244 pp. 36-47.
    42. J. C. Johannsen, S. Ulstrup, A. Crepaldi, F. Cilento, M. Zacchigna, J. A. Miwa, C. Cacho, R. T. Chapman, E. Springate, F. Fromm, C. Raidel, T. Seyller, P. D. C. King, F. Parmigiani, M. Grioni and P. Hofmann, "Tunable carrier multiplication and cooling in graphene." Nano Letters, 2015, vol. 15(1) pp. 326-331.
    43. C. N. R. Rao, K. Gopalakrishnan and A. Govindaraj, "Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements." Nano Today, 2014, vol. 9(3) pp. 324-343.
    44. L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare and C. N. R. Rao, "Synthesis, structure, and properties of boron- and nitrogen-doped graphene." Advanced Materials, 2009, vol. 21 pp. 4726-4730.
    45. Y. A. Kim, K. Fujisawa, H. Muramatsu, T. Hayashi, M. Endo, T. Fujimori, K. Kaneko, M. Terrones, J. Behrends, A. Eckmann, C. Casiraghi, K. S. Novoselov, R. Saito and M. S. Dresselhaus, "Raman spectroscopy of boron-doped single-layer graphene." ACS Nano, 2012, vol. 6(7) pp. 6293-6300.
    46. T. V. Khai, H. G. Na, D. S. Kwak, Y. J. Kwon, H. Ham, K. B. Shim and H. W. Kim, "Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films." Chemical Engineering Journal, 2012, vol. 211-212(15) pp. 369-377.
    47. M. Cattelan, S. Agnoli, M. Favaro, D. Garoli, F. Romanato, M. Meneghetti, A. Barinov, P. Dudin and G. Granozzi, "Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures." Chemistry of Materials, 2013, vol. 25(9) pp. 1490-1495.
    48. F. Guinea, M. I. Katsnelson and M. A. H. Vozmediano, "Midgap states and charge inhomogeneities in corrugated graphene." Physical Review B, 2008, vol. 77(7) pp. 075422.
    49. C. Casiraghi, "Raman intensity of graphene." Physica Status Solidi (b), 2011, vol. 248(11) pp. 2593-2597.
    50. M. Kalbac, A. Reina-Cecco, H. Farhat, J. Kong, L. Kavan and M. S. Dresselhaus, "The influence of strong electron and hole doping on the raman intensity of chemical vapor-deposition graphene." ACS Nano, 2010, vol. 4(10) pp. 6055-6063.
    51. M. C. Lemme, T. J. Echtermeyer, M. Baus and H. Kurz, "A graphene field-effect device." IEEE Electron Device Letters, 2007, vol. 28(4) pp. 282-284.
    52. Y. Sui and J. Appenzeller, "Screening and interlayer coupling in multilayer graphene field-effect transistors." Nano Letters, 2009, vol. 9(8) pp. 2973-2977.
    53. H. Wang, Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng and Z. Liu, "Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition." Small, 2013, vol. 9(8) pp. 1316-1320.
    54. D. Neamen, Semiconductor Physics And Devices. McGraw-Hill, 2003.
    55. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello and M. Polini, "Photodetectors based on graphene, other two-dimensional materials and hybrid systems." Nature Nanotechnology, 2014, vol. 9 pp. 780.
    56. F. Xia, H. Yan and P. Avouris, "The interaction of light and graphene: Basics, devices, and applications." Proceedings of the IEEE, 2013, vol. 101(7) pp. 1717-1731.
    57. K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst and F. H. L. Koppens, "Hot-carrier photocurrent effects at graphene-metal interfaces." Journal of Physics: Condens Matter, 2015, vol. 27(16) pp. 164207.
    58. X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew and M. S. Fuhrer, "Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene." Nature Nanotechnology, 2014, vol. 9(10) pp. 814-819.
    59. S. Wang, Y. Sekine, S. Suzuki, F. Maeda and H. Hibino, "Photocurrent generation of a single-gate graphene p–n junction fabricated by interfacial modification." Nanotechnology, 2015, vol. 26(38) pp. 385203.
    60. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor." Nature Nanotechnology, 2008, vol. 3 pp. 210.
    61. K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao and Z. Liu, "Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation." Nature communications, 2012, vol. 3 pp. 1280.
    62. N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov and P. J. Herrero1, "Hot carrier-assisted intrinsic photoresponse in graphene." Science, 2011, vol. 334(6056) pp. 648-652.
    63. 汪建民, 王治平, 王俊凱, 王朝弘, 朱志勳, 江志強, 吳南均, 吳泰伯, 李志甫, 李志浩, 李信義, 杜正恭, 周書燈, 林敬二, 凌永健, 高至鈞, 張石麟, 郭正次, 陳力俊, 陳信文, 陳建中, 陳彥甫, 陳榮顯, 陳福榮, 黃明清, 楊長謀, 葛裕逢, 賈緒威, 劉如喜, 潘扶民, 鄭紹良, 鮑忠興, 謝詠芬, 材料分析, 中國材料科學學會, 1998.
    64. P. Graves and D. Gardiner, Practical raman spectroscopy. Springer, 1989.
    65. D. J. O'Connor, B. A. Sexton and R. S. Smart, Surface analysis methods in materials science. Springer, 2013.
    66. H. Sun, J. Xu, C. Wang, G. Ge, Y. Jia, J. Liu, F. Song and J. Wan, "Synthesis of large-area monolayer and bilayer graphene using solid coronene by chemical vapor deposition." Carbon, 2016, vol. 108 pp. 356-362.
    67. Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, H. Yang and P. Richard, "Controllable growth of 1–7 layers of graphene by chemical vapour deposition." Carbon, 2014, vol. 73 pp. 252-258.
    68. N. An, F. Zhang, Z. Hu, Z. Li, L. Li, Y. Yang, B. Guo and Z. Lei, "Non-covalently functionalizing a graphene framework by anthraquinone for high-rate electrochemical energy storage." RSC Advances, 2015, vol. 5(30) pp. 23942-23951.
    69. H. Huang and X. Wang, "Design and synthesis of Pd–MnO2 nanolamella–graphene composite as a high-performance multifunctional electrocatalyst towards formic acid and methanol oxidation." Physical Chemistry Chemical Physics, 2013, vol. 15(25) pp. 10367-10375.
    70. S. Jung, I. T. Choi, K. Lim, J. Ko, J. C. Kim, J. Lee, M. J. Ju, H. K. Kim and J. Baek, "B-doped graphene as an electrochemically superior metal-free cathode material as compared to Pt over a Co(II)/Co(III) electrolyte for dye-sensitized solar cell." Chemistry of Materials, 2014, vol. 26(11) pp. 3586-3591.
    71. C. W. Jang, J. H. Kim, D. H. Lee, D. H. Shin, S. Kim, S. Choi, E. Hwang and R. G. Elliman, "Effect of stopping-layer-assisted boron-ion implantation on the electrical properties of graphene: Interplay between strain and charge doping." Carbon, 2017, vol. 118 pp. 343-347.
    72. D. R. Lide, Handbook of chemistry and physics 81st. CRC Press, 2000.
    73. T. Wu, H. Shen, L. Sun, B. Cheng, B. Liua and J. Shen, "Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid." New Journal of Chemistry, 2012, vol. 36(6) pp. 1385-1391.
    74. C. Gong, H. C. Floresca, D. Hinojos, S. McDonnell, X. Qin, Y. Hao, S. Jandhyala, G. Mordi, J. Kim, L. Colombo, R. S. Ruoff, M. J. Kim, K. Cho, R. M. Wallace and Y. J. Chabal, "Rapid selective etching of PMMA residues from transferred graphene by carbon dioxide." The Journal of Physical Chemistry C, 2013, vol. 117(44) pp. 23000-23008.
    75. Y. Ahn, J. Kim, S. Ganorkar, Y. Kim and S. Kim, "Thermal annealing of graphene to remove polymer residues." Materials Express, 2016, vol. 6(1) pp. 69-76.
    76. Y. G. Lee, S. K. Limb, C. G. Kang, Y. J. Kim, D. H. Choi, H. Chung, R. Choi and B. H. Lee, "Origin of the channel width dependent field effect mobility of graphene field effect transistors." Microelectronic Engineering, 2016, vol. 163 pp. 55-59.

    QR CODE