簡易檢索 / 詳目顯示

研究生: 林昱良
Yu-liang Lin
論文名稱: LED驅動器之均流與調光設計研究
Study on Current Balancing and Dimming Design for LED Drivers
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 劉益華
Yi-Hua Liu
林長華
Chang-Hua Lin
陳建富
Jiann-Fuh Chen
梁從主
Tsorng-Juu Liang
陳耀銘
Yaow-Ming Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 132
中文關鍵詞: 差模變壓器整合變壓器均流平緩式調光臨界式調光
外文關鍵詞: Differential Mode Transformer, Integrated Magnetic, Current Balancing, Smooth Dimming, Adaptive PWM Dimming
相關次數: 點閱:456下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出兩種LED驅動的均流架構:第一種為利用差模變壓器來均流,利用被動元件以實現兩組LED串的均流控制;另一種則進一步的整合能量傳輸電感與均流變壓器於同一顆磁性元件上,不但實現電能轉換並且減少了一顆磁性元件的使用。此外,由於LED的響應時間很快,容易實現調光功能以達成調節亮度與省電的要求。傳統的PWM調光方式,容易在導通瞬間產生過電流進而損壞LED晶體,本文研究以平緩的調光方式,讓導通LED的上升電壓斜率為平緩式的上升,使得PWM調光過程不會產生突波來傷害LED,進而延長其使用壽命。另一種則以臨界保護的調光方式,來實現調光功能。本文實現三個雛型電路,由實驗結果印證所提電路的均流與調光功能之可行性。


    Two current balancing structures have been proposed in this dissertation. One is differential mode transformer and another is integrated magnetic component. Not only current balancing can be achieved, and easy to implement. Besides, dimming control is often needed to regulate the lumen levels for contrast ratio and to achieve power saving. The typical PWM controlled switch series connect with the LED lamp for dimming, but the temporarily switching transient will shorten the lifetime of LED lamp. This dissertation presents smooth dimming which make the rising slope of voltage smoothly at LED turn-on moment without overshoot or first inrush and extend the LED’s lifetime in dimming interval. Another adaptive PWM dimming control is threshold current protection congenitally. Three laboratory prototypes were built and tested to verify the feasibility of the proposed schemes.

    摘 要 I ABSTRACT II 誌 謝 III 目 錄 IV 符號索引 VI 圖表索引 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 架構簡介 4 1.4 內容大綱 5 第二章 發光二極體介紹 6 2.1 簡介 6 2.2 LED發光原理與製造 7 2.3 LED的溫度特性 10 2.4 LED的調光驅動特性 12 第三章 LED驅動的研究課題 15 3.1 簡介 15 3.2 LED均流的研究 16 3.3 LED調光的研究 26 3.4 無電解電容的LED驅動設計 33 3.5 單級具PFC功能的LED驅動器 39 3.6 其他LED驅動研究課題 41 第四章 臨界式調光電路 52 4.1 簡介 52 4.2 工作原理 54 4.3 臨界式電路設計 57 4.4 實驗數據與波形 62 第五章 平緩式調光電路 68 5.1 簡介 68 5.2 工作原理 70 5.3 平緩式電路設計 80 5.4 實驗數據與波形 85 第六章 整合式變壓器的均流 95 6.1 簡介 95 6.2 工作原理 96 6.3 整合式變壓器設計 105 6.4 實驗數據與波形 108 第七章 結論與未來展望 116 7.1 結論 116 7.2 未來研究展望 117 參考文獻 119

    [1] 國際能源總署,http://www.iea.org/topics/energyefficiency/lighting/
    [2] 經濟部能源局,http://www.moeaboe.gov.tw/
    [3] 黃耀德,「具準確調光控制之複金屬燈電子安定器研究」,國立臺灣科技大學電機工程學系博士論文,2012年。
    [4] H. J. Round, “A note on carborundum,” Electrical world, vol.49, no.6, pp.309, 1907.
    [5] O. W. Lossev, Telegrafiai Telefonia, vol.18, pp.61, 1923.
    [6] G. Destriau, “AC electroluminesence in ZnS”, J. Chimie Phys., vol.33, pp.587, 1936.
    [7] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett., vol.1, pp.82-83, 1962.
    [8] J. I. Pankove, E. A. Miller, D. Richman, J. E. Berkeyheiser, “Electroluminescence in GaN,” J. of Luminescence, vol.4, pp.63-66, 1971.
    [9] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G., Craford, and V. M. Robbins, “High performance AlInGaP visible light emitting diodes,” Appl. Phys. Lett., vol. 57, pp 2937-2939, 1990.
    [10] I. Akasaki, H. Amano, Y. Koide, K. Kiramatsu, and N. Sawaki, “Effects of an AlN buffer layer on crystallographic structure and on electrical and optical properites of GaN and Ga1-xAlxN (0<x0.4) films grown on sapphire substrates by MOVPE,” J. Crystal Growth, vol.98, pp.209-219, 1989.
    [11] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation,” Jpn. J. Appl. Phys., vol.28, pp.L2112-L2114, 1989.
    [12] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type mg-doped GaN films,” Jpn. J. Appl. Phys., vol.31, pp.L139-L142, 1992.
    [13] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Mukai, “Superbright green InGaN single-quantum-well-structure light-enmitting diodes,” Jpn. J. Appl. Phys. vol.34, pp.L1332-L1335, 1995.
    [14] N. Holonyak, “From transistors to light emitters,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1190-1200, Dec. 2000.
    [15] 周志敏、紀愛華,「白光LED驅動電路設計與應用實例」,人民郵電出版社,2010年。
    [16] 楊森,「LED產業新版圖 : 新技術.新應用與投資機會」,財訊發行,2006年。
    [17] Y. X. Qin and S. Y. R. Hui, “Comparative study on the structural designs of LED devices and systems based on the general photo-electro-thermal theory,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 507-513, Feb. 2010.
    [18] X. Tao and S. Y. R. Hui, “Dynamic photoelectrothermal theory for light-emitting diode systems,” IEEE Trans. Ind. Electron., vol. 59, no. 4, pp. 1751-1759, Apr. 2012.
    [19] D. Gacio, J. M. Alonso, J. Garcia, M. S. Perdigao, E. Saraiva, and F. E. Bisogno, “Effects of the junction temperature on the dynamic resistance of white LEDs,” in Proc. 27th Annu. IEEE APEC, 2012, pp. 1708-1715.
    [20] W. A. Rodrigues, L. M. F. Morais, P. F. Donoso-Garcia, P. C. Cortizo, and S. I. Seleme, “Comparative analysis of power LEDs dimming method,” in Proc. 37th Annu. IEEE IECON, 2011, pp. 2907-2912.
    [21] S. C. Tan, “General n-level driving approach for improving electrical-to-optical energy-conversion efficiency of fast-response,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1342-1353, Apr. 2010.
    [22] S. Beczkowski and S. Munk-Nielsen, “Led spectral and power characteristics under hybrid PWM/AM dimming strategy,” in Proc. IEEE. Energy Conversion Congress and Exposition. 2010, pp. 731-735.
    [23] Y. Yang, Z. Song, and Y. Gao, “A white LED driver based on dual mode switch dimming,” Symposium on Photonics and Optoelectronics, 2009, pp. 1-4.
    [24] J. Zhang, J. Wang, X. Wu, and Z. Qian, “A capacitor-isolated LED driver with inherent current balance capability,” IEEE Trans. Ind. Electron., vol. 59, no. 4, pp. 1708-1716, Apr. 2012.
    [25] H. J. Chiu, Y. K. Lo, J. T. Chen, S. J. Cheng, C. Y. Lin, and S. C. Mou, “A high-efficiency dimmable led driver for low-power lighting application,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 735-743, Feb. 2010.
    [26] H. J. Chiu and S. J. Cheng, “LED backlight driving system for large scale LCD panels,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp.2751-2760, Oct. 2007.
    [27] Y. Hu and M. M. Jovanovic, “LED driver with self-adaptive drive voltage,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 3116-3125, Nov. 2008.
    [28] Q. Hu and R. Zane, “LED driver circuit with series-input-connected converter cells operating in continuous conduction mode,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 574-582, Mar. 2010.
    [29] K. I. Hwu and Y. T. Yau, “Applying one-comparator counter-based sampling to current sharing control of multichannel LED strings, ” IEEE Transactions on Industrial Applications, vol. 47, no. 6, pp. 2413-2421, Nov. 2011.
    [30] W. Chen and S. Y. R. Hui, “A dimmable light-emitting diode (LED) driver with mag-amp postregulators for multistring applications,” IEEE Trans. Power Electron, vol. 26, no. 6, pp. 1714-1722, Nov. 2011.
    [31] S. M. Baddela and D. S. Zinger, “Parallel connected LEDs operated at high frequency to improve current sharing,” in Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE, 2004, pp. 1677-1681 vol. 3.
    [32] S. Choi and T. Kim, “Symmetric current-balancing circuit for LED backlight with dimming,” IEEE Trans. Ind. Electron., vol. 59, no. 4, pp. 1698-1707, Apr. 2012.
    [33] X. Wu, J. Zhang, and Z. Qian, “A simple two-channel LED driver with automatic precise current balancing,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4783-4788, Oct. 2011.
    [34] J. Zhang, L. Xu, X. Wu, and Z. Qian, “A precise passive current balancing method for multioutput LED drivers,” IEEE Trans. Power Electronics., vol. 26, no. 8, pp. 2149-2159, Aug. 2011.
    [35] C. Zhao, X. Xie, and S. Liu, “Multioutput LED drivers with precise passive current balancing,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1438-1448, Mar. 2013.
    [36] K. I. Hwu and S. C. Chou, “A simple current-balancing converter for LED lighting,” in Proc. 24th Annu. IEEE APEC, 2009, pp. 587-590.
    [37] Y. Hu and M. M. Jovanovic, “A new current-balancing method for paralleled LED strings,” in Proc. 26th Annu. IEEE APEC, 2011, pp. 705-712.
    [38] K. I. Hwu, W. Tu, and M. Hong, “A LED current balancing driver with magnetizing inductance energy recycling considered,” in Proc. 27th Annu. IEEE APEC, 2012, pp. 975-979.
    [39] X. Wu, Z. Wang, and J. Zhang, “Design considerations for dual-output quasi-resonant flyback LED driver with current-sharing transformer,” IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4820-4830, Oct. 2013.
    [40] Y. H. Chang, Y. J. Chen, Y. C. Chuang, and C. S. Moo, “Driving circuit for high-brightness LED lamps,” in Proc. IEEE. Power Electronics Conference (IPEC), 2010, pp. 403-407.
    [41] W. Feng, F. C. Lee, and P. Mattavelli, “Optimal trajectory control of LLC resonant converters for LED PWM dimming,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 979-987, Feb. 2014.
    [42] S. Zhang, Q. Chen, J. Sun, M. Xu, and Y. Qiu, “High-accuracy passive current balancing schemes for large-scale LED backlight system,” in Proc. 26th Annu. IEEE APEC, 2011, pp. 723-727.
    [43] K. H. Jung, J. W. Yoo, and C. Y. Park, “A design of current balancing circuit for parallel connected LED strings using balancing transformers,” in Proc. IEEE Int. Conf. Power Electron. Energy Conversion Congress and Exposition. Asia, 2011, pp. 528-535.
    [44] S. Cho, S. Lee, S. Hong, D. Oh, S. Han, “High-accuracy and cost-effective current-balanced multichannel LED backlight driver using single-transformer,” IEEE Power Electronics and ECCE Asia (ICPE & ECCE), 2011, pp. 520-527.
    [45] H. Eom, C. C. Lee, T. Y. Yang, and S. Yang, “Design optimization of TRIAC-dimmable AC-DC converter in LED lighting,” in Proc. 27th Annu. IEEE APEC, 2012, pp. 831-835.
    [46] L. Yan, B. Chen, and J. Zheng, “A new TRIAC dimmable LED driver control method achieves high-PF and quality-of-light,” in Proc. 27th Annu. IEEE APEC, 2012, pp. 969-974.
    [47] Y. Shi, B. Liu, and S. Duan, “Simple TRIAC dimmable LED driving solution free of large passive input filter, DC bus capacitor or bleeding resistor,” IET Electronics Letters., vol. 48, no. 13, pp. 760-762, 2012.
    [48] D. Gacio, J. M. Alonso, J. Garcia, and M. R. Secades, “A universal-input single-stage high-power-factor power supply for HB-LEDs based on integrated buck-flyback converter,” in Proc. 24th Annu. IEEE APEC, 2009, pp. 570-576.
    [49] J. Garcia, A. J. Calleja, E. L. Corominas, D. G. Vaquero, and L. Campa, “Interleaved buck converter for fast PWM dimming of high-brightness LEDs,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2627-2636, Sep. 2011.
    [50] D. Gacio, J. M. Alonso, J. Garcia, L. Campa, M. J. Crespo, and M. R. Secades, “PWM series dimming for slow-dynamics HPF LED drivers: the high-frequency approach,” IEEE Trans. Ind. Electron., vol. 59, no. 4, pp. 1717-1727, Apr. 2012.
    [51] Y. T. Hsieh, B. D. Liu, J. F. Wu, C. L. Fang, H. H. Tasi, and Y. Z. Juang, “A high-dimming-ratio LED driver for LCD backlights,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4562-4570, Nov. 2012.
    [52] M. S. Lin and C. L. Chen, “An LED driver with pulse current driving technique,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4594-4601, Nov. 2012.
    [53] W. Yu, J. S. Lai, H. Ma and C. Zheng, “High-efficiency DC-DC converter with twin bus for dimmable LED lighting,” IEEE Trans. Power Electronics., vol. 26, no. 8, pp. 2095-2100, Nov. 2008.
    [54] P. Narra and D. S. Zinger, “An effective LED dimming approach,” in Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE, 2004, pp. 1671-1676 vol. 3.
    [55] C. M. S. Fu and D. D. C. Lu, “Shorting-inductor approach for dimming high power light-emitting diodes,” in Proc. IEEE Power Electronics and Drive Systems (PEDS), 2009, pp. 417-422.
    [56] X. H. Qu, S. C. Wang, C. K. Tse, and Z. J. Wu, “Contactless electronic ballast for high brightness LED lamps with mechanical dimming method,” in Proc. IEEE Power Electronics and Motion Control Conference (IPEMC), 2012, pp. 443-447.
    [57] P. S. Almeida, G. M. Soares, D. P. Pinto, and H. A. C. Braga, “Integrated SEPIC buck-boost converter as an off-line LED driver without electrolytic capacitors,” in Proc. 38th Annu. IEEE IECON, 2012, pp. 4551-4556.
    [58] J. Garcia, A. J. Calleja, E.L. Corominas, D. Gacio, and J. Ribas, “Electronic driver without electrolytic capacitor for dimming high brightness LEDs,” in Proc. 35th Annu. IEEE IECON, 2009, pp. 3518-3523.
    [59] Y. X. Qin, H. S. H. Chung, D. Y. Lin, and S. Y. R. Hui, “Current source ballast for high power lighting emitting diodes without electrolytic capacitor,” in Proc. 34th Annu. IEEE IECON, 2008, pp. 1968-1973.
    [60] M. Arias, M. F. Diaz, D. G. Lamar, D. Balocco, A. A. Diallo, and J. Sebastian, “High-efficiency asymmetrical half-bridge converter without electrolytic capacitor for low-output-voltage AC-DC LED drivers,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2539-2550, May. 2013.
    [61] H. Ma, J. S. Lai, Q. Feng, W. Yu, C. Zheng, and Z. Zhao, “A novel valley-fill SEPIC-derived power supply without electrolytic capacitors for LED lighting application,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 3057-3071, Jun. 2012.
    [62] S. Y. R. Hui, S. N. Li, X. H. Tao, and W. Chen, “A novel passive offline LED driver with long lifetime,” IEEE Trans. Power Electron., vol. 25, no. 10, pp. 2665-2672, Oct. 2010.
    [63] B. Zhang, X. Yang, M. Xu, Q. Chen, and Z. Wang, “Design of boost-flyback single-stage PFC converter for LED power supply without electrolytic capacitor for energy-storage,” in Proc. IEEE Power Electronics and Motion Control Conference (IPEMC), 2009, pp. 1668-1671.
    [64] J. Alonso, J. Vina, D. G. Vaquero, G. Martinez, and R. Osorio, “Analysis and design of the integrated double buck-boost converter as a high power-factor driver for power-LED lamps,” IEEE Trans. Ind. Electron, vol. 59, no. 4, pp. 1689-1697, Apr. 2012.
    [65] S. Wang, X. Ruan, K. Yao, S. C. Tan, Y. Yang, and Z. Ye, “A flicker-free electrolytic capacitor-less AC-DC LED driver,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4540-4548, Nov. 2012.
    [66] B. Wang, X. Ruan, K. Yao, and M. Xu, “A method of reducing the peak-to-average ratio of LED current for electrolytic capacitor-less AC-DC drivers,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 592-601, Mar. 2010.
    [67] W. Chen and S. Y. R. Hui, “Elimination of an electrolytic capacitor in AC/DC light-emitting diode (LED) driver with high input power factor and constant output current,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1598-1607, Mar. 2012.
    [68] S. Beczkowski and S. Munk-Nielsen, “Two phase interleaved buck converter for driving high power LEDs,” Power Electronics and Applications (EPE), 2011, pp. 1-6.
    [69] P. Zumel, C. Fernandez, M. Sanz, A. Lazaro, and A. Barrado, “HBLED driving strategy with reduced storage capacitor based on load modularization,” in Proc. 26th Annu. IEEE APEC, 2011, pp. 728-734.
    [70] R. A. Pinto, M. R. Cosetin, A. Campos, M. A. D. Costa, and R. N. d. Prado, “Compact emergency lamp using power LEDs,” IEEE Trans. Ind. Electron, vol. 59, no. 4, pp. 1728-1738, Apr. 2012.
    [71] Y. Hu, L. Huber, and M. M. Jovanovic, “Single-stage, universal-input AC/DC LED driver with current-controlled variable PFC boost inductor,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1579-1588, Mar. 2012.
    [72] X. Wu, J. Yang, J. Zhang, and Z. Qian, “Variable on-time (VOT)-controlled critical conduction mode buck PFC converter for high-input AC/DC HB-LED lighting applications,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4530-4539, Nov. 2012.
    [73] Y. C. Li and C. L. Chen, “A novel single-stage high-power-factor AC-to-DC LED driving circuit with leakage inductance energy recycling,” IEEE Trans. Ind. Electron, vol. 59, no. 2, pp. 793-802, Feb. 2012.
    [74] D. G. Lamar, M. Fernandez, M. Arias, M. M. Hernando, and J. Sebastian, “Tapped-inductor buck HB-LED AC-DC driver operating in boundary conduction mode for replacing incandescent bulb lamps,” IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4329-4337, Oct. 2012.
    [75] C. A. Cheng, H. L. Cheng, F. L. Yang, and C. W. Ku, “Single-stage driver for supplying high-power light-emitting-diodes with universal utility-line input voltages,” IET Power Electron., vol. 5, iss. 9, pp. 1614-1623, 2012.
    [76] X. Xie, J. Wang, C. Zhao, Q. Lu, and S. Liu, “A novel output current estimation and regulation circuit for primary side controlled high power factor single-stage flyback LED driver,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4602-4612, Nov. 2012.
    [77] J. Zhang, H. Zeng, and T. Jiang, “A primary-side control scheme for high-power-factor LED driver with TRIAC dimming capability,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4619-4629, Nov. 2012.
    [78] H. H. Chou, Y. S. Hwang, and J. J. Chen, “An adaptive output current estimation circuit for a primary-side controlled LED driver,” IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4811-4819, Oct. 2013.
    [79] M. G. L. Roes, J. L. Duarte, and M. A. M. Hendrix, “Disturbance observer-based control of a dual-output LLC converter for solid-state lighting applications,” IEEE Trans. Power Electron., vol. 26, no. 7, pp. 2018-2027, Jul. 2011.
    [80] C. Zheng, W. Yu, J. S. Lai, and H. Ma, “Single-switch three-level boost converter for PWM dimming LED lighting,” in Proc. IEEE. Energy Conversion Congress and Exposition. 2011, pp. 2589-2596.
    [81] W. Yu, C. Zheng, J. S. Lai, and H. Ma, “Single-switch three-level DC-DC converters for dimmable LED lighting,” in Proc. 26th Annu. IEEE APEC, 2011, pp. 735-740.
    [82] E. M. Sa, C. S. Postiglione, R. S. Santiago, F. L. M. Antunes, and A. J. Perin, “Self-oscillating flyback driver for power LEDs,” in Proc. IEEE. Energy Conversion Congress and Exposition. 2009, pp. 2827-2832.
    [83] Y. S. Chen, T. J. Liang, K. H. Chen, and J. N. Juang, “Study and implementation of high frequency pulse LED driver with self-oscillating circuit,” IEEE International Symposium on circuits and systems. 2011, pp. 498-501.
    [84] Y. Chen, Y. Nan, and Q. Kong, “A loss-adaptive self-oscillating buck converter for LED driving,” IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4321-4328, Oct. 2012.
    [85] N. Chen and H. S. H. Chung, “A universal driving technology for retrofit LED lamp for fluorescent lighting fixtures,” in Proc. 27th Annu. IEEE APEC, 2012, pp. 980-987.
    [86] B. Lee, H. Kim, and C. Rim, “Robust passive LED driver compatible with conventional rapid-start ballast,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3694-3706, Dec. 2011.
    [87] N. Chen and H. S. H. Chung, “A driving technology for retrofit LED lamp for fluorescent lighting fixtures with electronic ballasts,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 588-601, Feb. 2011.
    [88] Y. T. Huang, Y. T. Chen, Y. H. Liu, H. C. Hsiao, and W. T. Tsai, “LED compact-size and high-conversion-efficiency regulator for alternating-current-operated light-emitting diodes,” IEEE Trans. Ind. Electron, vol. 58, no. 9, pp. 4130-4135, Sep. 2011.
    [89] C. L. Kuo, T. J. Liang, K. H. Chen, and J. F. Chen, “Design and implementation of high frequency AC-LED driver with digital dimming,” IEEE International Symposium on circuits and systems. 2010, pp. 3713-3716.
    [90] K. H. Loo, Y. M. Lai, and C. K. Tse, “Design and analysis of LCC resonant network for quasi-lossless current balancing in multistring AC-LED array,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1047-1059, Feb. 2013.
    [91] K. I. Hwu and W. C. Tu, “Dimmable driver for light-emitting diode with total harmonic distortion improved,” IET Power Electron., vol. 5, iss. 1, pp. 59-67, 2012.
    [92] K. H. Wu, H. J. Chiu, and Y. K. Lo, “A single-stage high power-factor bridgeless AC-LED driver for lighting applications,” International Journal of Circuit Theory and Applications, Sep. 2012.
    [93] C. S. Moo, Y. J. Chen, and W. C. Yang, “An efficient driver for dimmable LED lighting,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4613-4618, Nov. 2012.
    [94] Y. J. Chen, W. C. Yang, C. S. Moo, and Y. C. Hsieh, “A high efficiency driver for high-brightness white LED lamp,” in Proc. IEEE TENCON, 2010, pp. 2313-2317.
    [95] C. Branas, F. J. Azcondo, R. Casanueva, and F. J. Diaz, “Phase-controlled parallel-series (LCpCs) resonant converter to drive high-brightness power LEDs,” in Proc. 37th Annu. IEEE IECON, 2011, pp. 2953-2957.
    [96] S. W. Hong, H. J. Kim, J. S. Park, Y. G. Pu, J. Cheon, D. H. Han, and K. Y. Lee, “Secondary-side LLC resonant controller IC with dynamic PWM dimming and dual-slope clock generator for LED backlight units,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3410-3422, Nov. 2011.
    [97] X. Qu, S. C. Wong, and C. K. Tse, “Resonance-assisted buck converter for offline driving of power LED replacement lamps,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 532-540, Feb. 2011.
    [98] Electromagnetic Compatibility (EMC), Part 3-2: Limits-limits for harmonic current emissions (equipment input current ≤ 16A per phase), Japanese Industrial Standard JIS C 61000-3-2, 2005.
    [99] ENERGY STAR program requirements for solid state lighting luminaires. (2009), Online. Available: http://www.energystar.gov/ia/partners/product_specs/program_reqs/SSL_prog_req_V1.1.pdf
    [100] ST Microelectronics, “FLYBACK converters with the L6561 PFC controller,” AN1060, Jan. 2003.
    [101] ST Microelectronics, “Design equations of high-power-factor FLYBACK converters based on the L6561,” AN1059, Sep. 2003.
    [102] ST Microelectronics, “UC3842 provides low-cost current mode control,” AN246/1188, 1995.
    [103] Texas Instruments Incorporated, "TL494 pulse width modulation control circuits", 2005.
    [104] P. Goodman. “Avoiding current spikes with LEDs,” NA04, Online. Available: ww.philipslumileds.com/uploads/246/NA04-pdf
    [105] Y. K. Lo, C. Y. Lin, H. J. Chiu, S. J. Cheng and J. Y. Lin, “Analysis and design of a push-pull quasi-resonant boost power factor corrector,” IEEE Trans. Power Electron, vol. 28, no. 1, pp. 347-356, Jan. 2013.
    [106] Z. W. Ouyang, Z. Zhang, O. C. Thomsen, and M. A. E. Andersen, “Planar-integrated magnetics (PIM) module in hybrid bidirectional DC-DC converter for fuel cell application,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3254-3264, Nov. 2011.
    [107] Z. W. Ouyang, G. Sen, O. C. Thomsen, and M. A. E. Andersen, “Analysis and design of fully integrated planar magnetics for primary-parallel isolated boost converter,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 494-508, Feb. 2013.
    [108] J. Imaoka and M. Yamamoto, “A novel integrated magnetic structure suitable for transformer-linked interleaved boost chopper circuit,” in Proc. IEEE. Energy Conversion Congress and Exposition. 2012, pp. 3279-3284.

    無法下載圖示 全文公開日期 2019/01/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE