簡易檢索 / 詳目顯示

研究生: 曾柏榮
Po-Jung Tseng
論文名稱: 高效率堆疊輸出電池充電器
A High-Efficiency Battery Charger with Cascode Output Design
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 陳建富
Jiann-Fuh Chen
梁從主
Tsung-Chu Liang
陳耀銘
Yaow-Ming Chen
劉益華
Yi-Hua Liu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 113
中文關鍵詞: 串聯諧振轉換器高效率電池充電器全橋相移轉換器堆疊輸出定電流定電壓
外文關鍵詞: High-efficiency Battery Charger, Phase-shifted Full-bridge Converter, Series-resonant Converter, Cascode Output, Constant Current, Constant Voltage
相關次數: 點閱:581下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文呈現一台高效率堆疊輸出電壓充電器,主要是設計適用於不同電池陣列的充電器,因此充電器的輸出電壓範圍較為廣泛。充電器在經由堆疊輸出電壓的設計方式,提高在寬範圍輸出電壓時變壓器的利用率與效率表現。為了瞭解本論文提出電路的可行性與設計概念的優異性,文中首先將介紹與分析兩個傳統的架構將,第一個架構是單級式架構,所選用的電路架構為全橋相移轉換器。第二個架構是兩級式架構,所選用的架構分別為全橋串聯諧振轉換器與降壓型轉換器,與兩級式架構相比,由相關數據分析可以得知堆疊式架構可以改善效率的表現。堆疊式架構的輸出電壓結構是使用兩個電壓堆疊,一個是固定電壓,另一個是可變的電壓。針對電池充電的應用,定電壓與定電流充電電路也可以與堆疊式架構整合實現。本文最後實作出兩個3.3 kW的單級式架構與堆疊式架構,經由測試結果來驗證本論文提出的設計概念的可行性。


    This dissertation presents a high-efficiency battery charger with cascode output design. The presented battery charger is designed for charging different battery banks, so the output voltage range is wider. By using cascode output voltage, the proposed scheme improves the transformer utilization and the efficiency performance under wide range output voltage. To show the feasibility and superiority of the proposed circuit, two conventional battery chargers are discussed and analyzed. Firstly, a single-stage topology is implemented by phase-shifted full-bridge converter. Secondly, a two-stage topology is implemented by full-bridge series-resonant converter and buck converter. The proposed cascode topology improves the efficiency performance compared with the two-stage topology. The output stage is a cascode structure comprising fixed voltage and variable voltage. The constant current and constant voltage charging schemes can be achieved by the proposed cascode configuration for battery charger applications. Two 3.3-kW laboratory prototypes of the single-stage scheme and the proposed topology are implemented and tested. The experimental results are shown to verify the feasibility of the proposed scheme.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 vi 圖索引 ix 表索引 xii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究進行步驟 3 1.3 內文編排方式 4 第二章 高功率充電器架構介紹 5 2.1 單級式架構 5 2.1.1 單級式電路與基本動作原理 5 2.1.2 電路控制模式與方塊圖簡介 8 2.2 兩級式架構 9 2.2.1 兩級式電路與基本動作原理 9 2.2.2 全橋串聯諧振轉換器 10 2.2.3 降壓型轉換器 13 2.2.4 電路控制模式與方塊圖簡介 15 第三章 高效率直流/直流可調堆疊輸出充電器 16 3.1 電路架構分析 16 3.1.1 堆疊輸出電路與基本動作原理 16 3.1.2 電路控制模式簡介 19 3.2 雙輸出全橋串聯諧振轉換器 21 3.2.1 電路動作原理 21 3.2.2 全橋串聯轉換器諧振槽分析 29 3.2.3 變壓器一二次側匝數比設計概念 32 3.2.4 品質因數Q值及K因子設計概念 34 3.3 可調輸出降壓型轉換器 37 3.3.1 電路動作原理 37 3.3.2 回授控制方式 42 3.4 定電壓與定電流的設計與應用 43 3.4.1 定電壓設計與應用 43 3.4.2 定電流設計與應用 45 3.4.3 三階段定電流-定電流-定電壓電路 46 第四章 電路設計考量與設計實例 49 4.1 電路規格 49 4.2 單級式架構 49 4.3 堆疊式架構 54 4.3.1 全橋串聯諧振轉換器 54 4.3.2 降壓型轉換器 59 第五章 單級式架構與堆疊式架構損耗分析 62 5.1 單級式架構與堆疊式架構效率比較分析 62 5.2 兩級式架構與堆疊式架構效率比較分析 68 第六章 電路模擬與實測 73 6.1 電路模擬 73 6.1.1 雙輸出全橋串聯諧振轉換器 73 6.1.2 可調輸出電壓降壓型轉換器 79 6.2 電路實測 82 6.2.1 單級式全橋相移轉換器實測 83 6.2.2 堆疊式架構實測 85 6.3 三階段充電電路電池實際驗證 90 第七章 結論與未來展望 91 7.1 結論 91 7.2 未來展望 92 參考文獻 94

    [1] A. F. Bakan, N. Altintas, and I. Aksoy, "An improved PSFB PWM DC–DC converter for high-power and frequency applications," IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 64-74, Jan. 2013.
    [2] I. H. Cho, K. M. Cho, J. W. Kim, and G. W. Moon, "A new phase-shifted full-bridge converter with maximum duty operation for server power system," IEEE Transactions on Power Electronics, vol. 26, no. 12, pp.3491-3500, Dec. 2011.
    [3] X. Wu, J. Zhang, G. Wu, and Z. Qian, "High efficiency phase-shift controlled hybrid full bridge DC bus converter," in Proc. APEC, 2006, pp. 1333-1338.
    [4] I. O. Lee, S. Y. Cho, and G. W. Moon, "Three-level resonant converter with double LLC resonant tanks for high-input-voltage applications," IEEE Transactions on Industrial Electronics, vol. 59, no. 9, pp. 3450-3463, Sept. 2012.
    [5] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, "A design procedure for optimizing the LLC resonant converter as a wide output range voltage source," IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3749-3763, Aug. 2012.
    [6] K. A. Cho, S. H. Ahn, S. B. Ok, H. J. Ryoo, S. R. Jang, and G. H. Rim, "Design of LCC resonant converter for renewable energy systems with wide-range input voltage," in Proc. IPEMC, 2012, pp.1221-1228.
    [7] J. H. Jung, H. S. Kim, J. H. Kim, M. H. Ryu, and J. W. Baek, "High efficiency bidirectional LLC resonant converter for 380V DC power distribution system using digital control scheme," in Proc. APEC, 2012, pp. 532-538.
    [8] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, "Optimizing the normalized dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter," IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 462-472, Feb. 2011.
    [9] R. L. Lin and C. W. Lin, "Design criteria for resonant tank of LLC DC-DC resonant converter," in Proc. IECON, 2010, pp. 427-432.
    [10] C. Nagarajan and M. Madhswaran, "Analysis and simulation of LCL series resonant full bridge converter using PWM technique with load independent operation," in Proc. ICTES, 2007, pp 190-195.
    [11] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, "LLC resonant converter for front end DC/DC conversion," in Proc. APEC, 2002, pp. 1108-1112.
    [12] B. Gu. C. Y. Lin, B. F. Chen, J. Dominic, and J. S. Lai, "Zero-voltage-switching PWM resonant full-bridge converter With minimized circulating losses and minimal voltage stresses of bridge rectifiers for electric vehicle battery chargers," IEEE Transactions on Power Electronics, vol. 28, no. 10, pp. 4657-4667, Oct. 2013.
    [13] J. Dudrik, P. Spanik, and N. D. Trip, "Zero-voltage and zero-current switching full-bridge DC-DC converter with auxiliary transformer," IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1328-1335, Sept. 2006.
    [14] X. Wu, J. M. Zhang, and Z. Qian, "Optimum design considerations for a high efficiency ZVS full bridge DC-DC converter," in Proc. INTELEC, 2004, pp. 338-344.
    [15] G. B. Lima, D. B. Rodrigues, A. V. Costa, L. C. Freitas, E. A. A. Coelho, V. J. Farias, and L. C. G. Freitas, "Novel proposal of hybrids rectifiers with voltage sag ride-through capability based on series DC voltage compensation technique," in Proc. APEC, 2013, pp. 2162-2170.
    [16] M. Tomlinson, D. Abrie, and T. Mouton, "Series-stacked medium voltage electronic voltage regulator," in Proc. ECCE, 2011, pp. 1087-1093.
    [17] S.H. Cho, C. W. Roh, S. S. Hong, and S. K. Han, "High efficiency and low cost tightly regulated dual output LLC resonant converter," in Proc. ISIE, 2010, pp. 862-869.
    [18] L. J. Hang, Y. L. Gu, Z. Y. Lu, Z. M. Qian, and D. H. Xu, "Magamp post regulation for LLC series resonant converter with multi-output," in Proc. IECON, 2005, pp. 628-632.
    [19] Q. Chen, F. C. Lee, and M. M. Jovanovic, "Analysis and design of multiple-output converters with stacked secondaries," in Proc. INTELEC, 1993, pp. 365-371.
    [20] J. P. Agrawal and I. Batarseh, "Improving the dynamic and static cross regulation in multi-output resonant converters," in Proc. APEC, 1993, pp. 65-70.
    [21] R. Yu, B. M. H. Pong, B. W. K. Ling, and J. Lam, "Two-stage optimization method for efficient power converter design including light load operation," IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1327-1337, March 2012.
    [22] Z. Emami, M. Nikpendar, N. Shafiei, and S. R. Motahari, "Leading and lagging legs power loss analysis in ZVS phase-shift full bridge converter," in Proc. PEDSTC, 2011, pp. 632-637.
    [23] Y. Chen, P. Asadi, and P. Parto, "Comparative analysis of power stage losses for synchronous buck converter in diode emulation mode vs. continuous conduction mode at light load condition," in Proc. APEC, 2010, pp. 1578-1583.
    [24] B. Y. Chen and Y. S. Lai, "Switching control technique of phase-shift-controlled full-vridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components," IEEE Transactions on Power Electronics, vol. 25, no. 4, pp. 1001-1012, April 2010.
    [25] O. Abdel-Rahman, J. A. Abu-Qahouq, L. Huang, and I. Batarseh, "Analysis and design of voltage regulator with adaptive FET modulation scheme and improved efficiency," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 896-906, March 2008.
    [26] Y. Ren, M. Xu, J. Zhou, and F. C. Lee, "Analytical loss model of power MOSFET," IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 310-319, March 2006.
    [27] W. Zhang, Y. Liu, Z. Li, and X. Zhang, "The dynamic power loss analysis in buck converter," in Proc. IPEMC, 2009, pp. 362-367.

    無法下載圖示 全文公開日期 2019/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE