簡易檢索 / 詳目顯示

研究生: 顏永昌
Yeong-Chang Yan
論文名稱: 雙開關返馳式轉換器之系統分析與設計
Systematic Analysis and Design of Dual-Switch Flyback Converter
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 楊宗銘
Chung-Ming Young
劉益華
Yi-Hua Liu
林長華
Chang-Hua Lin
王見銘
Chien-Ming Wang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 返馳式轉換器雙開關電路漏電感耦合係數
外文關鍵詞: flyback converter, dual-switch circuit, leakage inductance, coupling coefficient
相關次數: 點閱:535下載:47
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙開關返馳式轉換器跟單開關架構一樣,都具有電路拓樸簡單、成本低廉、電氣隔離與同時可多組輸出的特性。但雙開關架構由於能夠提供漏感上的電流之能量回復路徑,除能降低振鈴產生外,也會提高電路的轉換效率,而且可採用較為便宜、適於低電壓操作的功率開關,所以也被廣泛地應用。
    本論文首先針對雙開關返馳式電源轉換器在進行切換操作時,建立各操作狀態所對應的電路模式,並予以分析,同時獲得各電路模式的動態方程式。其次推導出耦合電感器一次側繞組的臨界電感、輸出電容及各相關數學模式,藉以求算出此兩關鍵元件之參數值大小。本文接著利用Pspice模擬軟體進行電路模擬,並實作一電路雛型測試,由模擬、實測之各相關電壓、電流波形,可驗證前述理論分析的正確性。其中不只在CCM操作情況,即使在CCM/DCM臨界操作點上,動態方程式也都能夠完全吻合轉換器的操作特性。


    Like single-switch architecture, the dual-switch flyback converter also has the same characteristics, including simple circuit topology, low cost, electrical isolation and multiple outputs. Moreover, due to the dual-switch flyback converter providing an additional current return path, it will reduce the ring effect and enhance the circuit conversion efficiency, and it is suited to use for the low-voltage and low-cost power switches. Therefore, the dual-switch topology is also widely used.
    This dissertation presents the circuit analysis and design considerations for the dual-switch flyback converter. The operation modes are individually analyzed and the corresponding dynamic equations are presented accordingly. Also, the design criteria for key components are derived. Good agreement can be obtained among the Pspice simulation, the experimental results and the theoretical analysis. The analytic equations are valid not only for continuous-conduction-mode condition, but also for critical mode operation, which meet the design specifications.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 符 號 索 引 VI 圖 表 目 錄 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與貢獻 1 1.3 論文大綱 2 第二章 電路操作原理與理論分析 4 2.1 電路架構 4 2.2 等效電路 5 2.3 電路操作原理 6 2.3.1 電路模式一 6 2.3.2 電路模式二 8 2.3.3 電路模式三 9 2.3.4 電路模式四 11 2.4 理論分析 12 2.4.1 CCM操作情況 13 2.4.2 CCM/DCM臨界操作點 15 第三章 模式分析與電路元件參數值設計 17 3.1 模式分析 17 3.1.1 電路模式之時間間隔 17 3.1.2 電流波形斜率 19 3.1.3 時間間隔與電流波形斜率之關聯 20 3.2 電路元件參數值設計 21 3.2.1 一次側繞組之臨界電感 22 3.2.2 輸出電容 22 3.3 單、雙開關架構之間的公式比較 25 第四章 功率分析 29 4.1 CCM/DCM臨界操作點 29 4.1.1 各元件之分析 29 4.1.2 電壓、電流波形之分析 44 4.2 CCM操作情況 46 4.3 工作週期比D之推導 49 第五章 模擬與實作驗證 51 5.1 模擬與實測波形 51 5.1.1 模擬波形 51 5.1.2 實測波形 56 5.2 數學模式驗證 59 5.2.1 電流波形斜率 59 5.2.2 電路模式之時間間隔 65 第六章 結論與未來展望 69 6.1 結論 69 6.2未來展望 69 參 考 文 獻 71

    [1] H. Ma, J. S. (Jason) Lai, Q. Feng, W. Yu, and C. Zheng, “A universal-input high-power-factor power supply without electrolytic capacitor for multiple lighting LED lamps,” International Journal of Circuit Theory and Applications, vol. 41, no. 5, pp. 514-534, May 2013.
    [2] H. J. Chiu, H. M. Huang, H. T. Yang, and S. J. Cheng, “An improved single-stage flyback PFC converter for high-luminance lighting LED lamps,” International Journal of Circuit Theory and Applications, vol. 36, no. 2, pp. 205-210, March/April 2008.
    [3] Edward M. Cherry, “Universal basis for ranking small-signal aspects of compensation techniques for operational amplifiers,” International Journal of Circuit Theory and Applications, vol. 39, no. 11, pp. 1105-1144, Nov. 2011.
    [4] Y. K. Chen and C. C. Song, “A structural approach to synthesizing, analyzing, and modeling quasi-resonant converters,” International Journal of Circuit Theory and Applications, vol. 41, no. 1, pp. 83-99, Jan. 2013.
    [5] H. J. Chiu, Y. K. Lo, S. J. Cheng, Y. C. Yan, H. C. Lee, K. H. Wu, C. Y. Lin, S. S. Ho, M. H. Tseng, and F. H. Huang, “A single-stage LED lamp driver with low DC bus voltage for general lighting applications,” International Journal of Circuit Theory and Applications, vol. 39, no. 11, pp. 1161-1175, Nov. 2011.
    [6] Y. H. Chang and K. W. Wu, “A gain/efficiency-enhanced bidirectional switched-capacitor DC-DC converter,” International Journal of Circuit Theory and Applications, vol. 42, no. 5, pp. 468-493, May 2014.
    [7] Majid Reza Naseh and Mohammad Haeri, “An optimal approach to synchronize non-identical chaotic circuits: an experimental study,” International Journal of Circuit Theory and Applications, vol. 39, no. 9, pp. 947-962, Sept. 2011.
    [8] Marco Guermandi, Eleonora Franchi, and Antonio Gnudi, “On the simulation of fast settling charge pump PLLs up to fourth order,” International Journal of Circuit Theory and Applications, vol. 39, no. 12, pp. 1257-1273, Dec. 2011.
    [9] D. Murthy-Bellur and M. K. Kazimierczuk, “Zero-current-transition two-switch flyback pulse-width modulated DC–DC converter,” IET Power Electronics, vol. 4, no. 3, pp. 288-295, March 2011.
    [10] D. Murthy-Bellur and M. K. Kazimierczuk, “Two-switch flyback PWM DC-DC converter in continuous-conduction mode,” International Journal of Circuit Theory and Applications, vol. 39, no. 11, pp. 1145-1160, Nov. 2011.
    [11] D. Murthy-Bellur and M. K. Kazimierczuk, “Active-clamp ZVS two-switch flyback converter,” in Proceedings of IEEE International Symposium on Circuits and Systems, 2011, pp. 241-244.
    [12] Y. Xi, P. K. Jain, G. Joos, and Y. F. Liu, “An improved zero voltage switching flyback converter topology,” in Proceedings of IEEE Power Electronics Specialists Conference, 1998, pp. 923-929.
    [13] K. Jirasereeamornkul, Y. Rozmngraungpalangkzd, and K. Chamnongthai, “A single stage single switch power factor correction converter,” in Proceedings of IEEE International Symposium on Circuits and Systems, 2001, pp. 397-400.
    [14] J. H. Kim, M. H. Ryu, B. D. Min, and E. H. Song, “A method to reduce power consumption of active-clamped flyback converter at no-load condition,” in Proceedings of IEEE Industrial Electronics Conference, 2006, pp. 2811-2814.
    [15] H. Y. Li, H. C. Chen, and L. K. Chang, “Analysis and design of a single-stage parallel AC-to-DC converter,” IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2898-3002, Dec. 2009.
    [16] R. D. Stracquadaini, “Mixed mode control (fixed off time & quasi resonant) for flyback converter,” in Proceedings of IEEE Industrial Electronics Society Conference, 2010, pp. 556-561.
    [17] J. Y. Gu, H. F. Wu, G. C. Chen, and Y. Xing, “Research on photovoltaic grid-connected inverter based on soft-switching interleaved flyback converter,” in Proceedings of IEEE Industrial Electronics and Applications Conference, 2010, pp. 1209-1214.
    [18] R. Prieto, J. A. Cobos, O. Garcia, R. Asensi, and J. Uceda, “Optimizing the winding strategy of the transformer in a flyback converter,” in Proceedings of IEEE Power Electronics Specialists Conference, 1996, pp. 1456-1462.
    [19] H. Chung, S. Y. R. Hui, and W. H. Wang, “An isolated ZVS/ZCS flyback converter using the leakage inductance of the coupled inductor,” IEEE Transactions on Industrial Electronics, vol. 45, no. 4, pp. 679-682, Aug. 1998.
    [20] H. S. H. Chung, W. L. Cheung, and K. S. Tang, “A ZCS bidirectional flyback converter,” in Proceedings of IEEE Power Electronics Specialists Conference, 2004, pp. 1506-1512.
    [21] S. K. Chung, “Transient characteristics of high-voltage flyback transformer operating in discontinuous conduction mode,” IEE Proceedings, Electric Power Applications, vol. 151, no. 5, pp. 628-234, Sept. 2004.
    [22] T. E. Salem, C. W. Tipton, and D. Porschet, “Fabrication and practical considerations of a flyback transformer for use in high pulsed-power applications,” in Proceedings of Southeastern Symposium on System Theory, 2006, pp. 406-409.
    [23] K. W. Huang, J. Li, X. L. Hu, and N. J. Fan, “Analysis and simulation of the influence of transformer parasitics to low power high voltage output flyback converter,” in Proceedings of IEEE International Symposium on Industrial Electronics, 2008, pp. 305-310.
    [24] K. Huang, J. Li, N. Fan, Y. Li, X. Hu, and L. Wu, “Modeling analysis and simulation of high-voltage flyback DC-DC converter,” in Proceedings of IEEE International Symposium on Industrial Electronics, 2009, pp. 813-818.
    [25] C. W. Chang and Y. Y. Tzou, “Primary-side sensing error analysis for flyback converters,” in Proceedings of IEEE Power Electronics and Motion Control Conference, 2009, pp. 524-528.
    [26] A. Bouabana and C. Sourkounis, “Design and analysis of a coreless flyback converter with a planar printed-circuit-board transformer,” in Proceedings of Optimization of Electrical and Electronic Equipment Conference, 2010, pp. 557-563.
    [27] C. Y. Inaba, Y. Konishi, H. Tanimatsu, Y. Ishigami, and M. Nakaoka, “Passive resonant snubber-assisted two-switch flyback converter with auxiliary pulse transformer for energy recovery,” in Proceedings of IEEE Industrial Electronics Society Conference, 2003, pp. 55-59.
    [28] C. Y. Inaba, Y. Konishi, H. Tanimatsu, K. Hirachi, and M. Nakaoka, “Soft switching PWM DC-DC flyback converter with transformer-assisted pulse current regenerative passive resonant snubbers,” in Proceedings of Power Electronics and Drive Systems Conference, 2003, pp. 882-887.
    [29] H. Terashi and T. Ninomiya, “Analysis of leakage-inductance effect in a flyback DC-DC converter using time keeping control,” in Proceedings of Telecommunications Energy Conference, 2004, pp. 718-724.
    [30] C. Wang, Z. Wang, and N. Zhang, “Design of two-switch flyback converter with CLC output filter,” in Proceedings of IEEE Power Electronics and Motion Control Conference, 2009, pp. 358-361.
    [31] S. A. Liang ed., Theory and Practical Design of the Switching Power Supplies, Taipei : Chuan-Hwa Books, 2009.
    [32] C. P. Basso, Switch-Mode Power Supplies -- SPICE Simulations and Practical Designs, New York: McGraw-Hill, 2008.

    QR CODE