簡易檢索 / 詳目顯示

研究生: 張家睿
Chia-Jui Chang
論文名稱: 以碳化鎢刀具車削Ti-10V-2Fe-3Al之切削力、刀具磨耗、表面粗糙度及次表面破壞之研究
Study on the Cutting Force, Tool Wear, Surface Roughness and Second Surface Damage in the Turning of Ti-10V-2Fe-3Al Alloy Using WC Tools
指導教授: 修芳仲
Fang-Jung Shiou
口試委員: 鍾俊輝
Chun-hui Chung
李維楨
Wei-Chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 86
中文關鍵詞: 鈦合金車削切削力刀具磨耗表面粗糙度
外文關鍵詞: Titanium alloy, Turning, Cutting force, Tool wear, Surface roughness
相關次數: 點閱:353下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討使用碳化鎢刀具車削Ti-10V-2Fe-3Al之切削性質,使用田口法設計本研究之切削參數,探討各切削特性與其因子間之影響程度,本研究之實驗因子分別為切削速度60、80及100 m/min,每轉進給0.1、0.2及0.3 mm/rev,切深為0.2、0.3及0.4 mm。根據實驗結果,分析因子影響程度如下:當切削速度60、80及100 m/m時切削剪切應力τ範圍坐落在630 ~ 690 Mpa之間。對於刀腹磨耗,刀具磨耗的部分將使用刀腹磨耗量與材料移除量之比值做為結果分析,其結果顯示,切削速度越慢,每轉進給越小,切深越小,能夠獲得越好的刀具磨耗。表面粗糙度部分結果顯示,每轉進給越小,切深越小,切削速度越快,能夠獲得較佳之表面粗糙度。



    This thesis will also focus on above two dimensions by exploring the cutting properties of Ti-10V-2Fe-3Al using WC tools, building up a model of cutting parameters to explore the interaction between each cutting characteristic and its factors by using Taguchi method. The thesis use cutting speed of 60, 80 and 100 m/min; feed 0.1, 0.2 and 0.3 mm/rev; depth of cut are 0.2, 0.3 and 0.4 mm as experimental factor.According to the results, range of shear stress τ locate between 630 ~ 690 N / mm2 for cutting speed. For flank wear and tool wear, using the ratio of tool wear and the cutting volume. Experiment outputs shows that slower cutting speed, smaller federate and deapth of cut lead you to he better tool wear. For surface roughness, it shows that the smaller feedrate, the smaller depth of cut, and the faster cutting speed lead you to better surface roughness.

    摘要 IV Abstract V 致謝 VI 目錄 VII 圖索引 IX 表索引 XI 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 2 1.3 文獻回顧 3 1.3.1 航太材料簡介 3 1.3.2 鈦合金 3 1.3.3 切削力 5 1.3.4 刀具磨耗 6 1.3.5 表面粗糙度 9 1.3.6 次表面破壞 10 1.4 論文架構 11 第2章 實驗規劃與設備介紹 12 2.1 實驗目的與規劃 12 2.1.1 切削參數規劃 15 2.2 實驗設備介紹 16 2.2.1 切削設備 16 2.2.2 切削刀具 17 2.2.3 實驗材料 18 2.3 量測方法 18 2.3.1 切削力(Cutting Force) 18 2.3.2 刀具磨耗(Tool Wear) 22 2.3.3 表面粗糙度(Surface Roughness) 23 第3章 實驗結果與討論 25 3.1 切削力(Cutting Force) 25 3.1.1 切削力結果討論 28 3.2 刀具磨耗(Tool Wear) 29 3.2.1 刀具磨耗結果討論 43 3.3 表面粗糙度(Surface Roughness) 45 3.3.1 表面粗糙度結果與討論 50 3.4 次表面破壞(Subsurface Damage) 51 3.4.1 次表面破壞結果討論 52 第4章 結論 53 4.1 結論 53 4.2 未來展望 54 參考文獻 55 附錄 A 剪切應力計算結果 58 附錄 B 刀具磨耗值數據 63 附錄 C 表面粗糙度數據 66

    洪胤庭,純鈦及鈦合金特性及製程介紹,中工高雄會刊,台灣,2013。

    A.P. Mouritz, 2012, Introduction to aerospace materials, Elsevier, Germany

    J.P., Davim, 2014, Machining of titanium alloys, Springer, Berlin, Heidelberg.

    K.A. Venugopal, S. Paul and A. B. Chattopadhyay, 2007,“Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling,” Wear, vol. 262, no. 9, pp. 1071-1078.

    K.A. Venugopal, S. Paul and A.B. Chattopadhyay, 2007, "Tool wear in cryogenic turning of Ti-6Al-4V alloy," Cryogenics, vol. 47, no. 1, pp. 12-18.

    J.X. Deng, Y.S. Li. and W.L. Song, 2008, “Diffusion wear in dry cutting of Ti–6Al–4V with WC/Co carbide tools, ” Wear, vol. 265, no. 11, pp. 1776-1783.

    C. Machai and D. Biermann, 2011,“Machining of β-titanium-alloy Ti–10V–2Fe–3Al under cryogenic conditions: Cooling with carbon dioxide snow,” Journal of Materials Processing Technology, vol. 211, no. 6, pp. 1175-1183.

    S. Debnath, M.M. Reddy and Q.S. Yi, 2016,“Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method,” Measurement, vol. 78, pp. 111-119.

    Standard, I.S.O., 1993, “Tool Life Testing with Single-Point Turning Tools.” ISO/DIS, 8688.

    X.Q. Wang, X. Ai, J. Zhao, X. L. Fu and Y. Z. Pan, 2012,“Tool Life Prediction and Cutting Parameter Optimization for Coated Carbide in Ti6Al4V Turning,” Advanced Materials Research, vol. 426, pp. 186-189.

    A. Jawaid, C.H. Che-Haron and A. Abdullah, 1999,“Tool wear characteristics in turning of titanium alloy Ti-6246,” Journal of Materials Processing Technology, vol. 92-93, pp. 329-334.

    G.-Z. Quan, W.-Q. Lv, J.-T. Liang, S.-A. Pu, G.-C. Luo and Q. Liu, 2015,“Evaluation of the hot workability corresponding to complex deformation mechanism evolution for Ti–10V–2Fe–3Al alloy in a wide condition range,” Journal of Materials Processing Technology, vol. 221, pp. 66-79.

    A. Aramcharoen, 2016,“Influence of Cryogenic Cooling on Tool Wear and Chip Formation in Turning of Titanium Alloy,” Procedia CIRP, vol. 46, pp. 83-86.

    G. Rotella, S. Imbrogno, S. Candamano and D. Umbrello, 2018,“Surface integrity of machined additively manufactured Ti alloys,” Journal of Materials Processing Technology, vol. 259, pp. 180-185.

    V. Tebaldo, L. Kilpi, H. Ronkainen and M. G. Faga, 2018,“Tribological properties of AlTIN coating in sliding contact with Ti6Al4V: A helpful tool for disentangling the phenomena complexity during real turning operations,” Tribology International, vol. 123, pp. 71-80.

    M. Boujelbene, 2018,“Investigation and modeling of the tangential cutting force of the Titanium alloy Ti-6Al-4V in the orthogonal turning process,” Procedia Manufacturing, vol. 20, pp. 571-577.

    E. Chiappini, S. Tirelli, P. Albertelli, M. Strano and M. Monno, 2014,“On the mechanics of chip formation in Ti–6Al–4V turning with spindle speed variation,” International Journal of Machine Tools and Manufacture, vol. 77, pp. 16-26.

    R. B. da Silva, Á. R. Machado, E. O. Ezugwu, J. Bonney and W. F. Sales, 2013,“Tool life and wear mechanisms in high speed machining of Ti–6Al–4V alloy with PCD tools under various coolant pressures,” Journal of Materials Processing Technology, vol. 213, no. 8, pp. 1459-1464.

    許家和,使用鍍層碳化鎢刀具切削Ti-6Al-4V和Ti-10V-2Fe-3Al鈦合金之切削性質研究,碩士論文,國立臺灣科技大學機械工程系,台北,台灣,,2017。

    黃子浩,以擺線工法切削Ti-10V-2Fe-3Al之分析研究,碩士論文,國立臺灣科技大學機械工程系,台北,台灣,2018。 

    無法下載圖示 全文公開日期 2025/01/22 (校內網路)
    全文公開日期 2025/01/22 (校外網路)
    全文公開日期 2025/01/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE