簡易檢索 / 詳目顯示

研究生: 呂佳泓
Chia-Hung Lu
論文名稱: 使用雷射對316L不鏽鋼送線直接能量沉積的可行性研究
Feasibility Study of Wire-feed Directed Energy Deposition of 316L Stainless Steel Using Laser
指導教授: 李維楨
Wei-Chen Lee
口試委員: 修芳仲
Fang-Jung Shiou
鍾俊輝
Chun-Hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 73
中文關鍵詞: 316L不鏽鋼線材金屬積層製造直接能量沉積單位長度能量
外文關鍵詞: 316L stainless steel wire, Metal material additive manufacturing, Directed Energy Deposition, Energy per unit length
相關次數: 點閱:326下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著積層製造技術的成熟,開始從以前的高分子材料往金屬材料延伸,對航太業、造船業以及汽車業等產業都有發展性,因此也吸引許多廠商開發新的金屬積層製造機,並研發出多種製程技術,而金屬的積層製造又以線材及粉末兩種材料形式較多。本實驗主要探討以直徑0.8 mm的316L不鏽鋼線材在S45C板材的沉積情形,實驗採用直接能量沉積(Directed Energy Deposition, DED)的技術,藉由兩道雷射光產生的熔池將線材送入熔化。在單層沉積的實驗,固定參數包括送線速度320 mm/min、惰性氣體壓力4 kg/cm2,而實驗變化參數分別為雷射功率200、250、300、350、400、450、487 Watt及床台進給率175、200、225、250、275、300、325 mm/min。實驗結果顯示以雷射功率較高的400及450 Watt搭配床台進給率300 mm/min會有較佳的沉積結果。在固定送線速度的情況下,不同單位長度的能量與體積會互相影響,當床台進給率快而單位長度能量高的區域會有較好的成線結果;高能量但低進給率則容易造成結球;而低能量不論床台進給率為快或慢都不容易沉積在板材上。


    With the evolution of additive manufacturing technology, the process has extended from polymer based to metal material additive manufacturing which has been applied in aerospace, ship building and automobile industry. Therefore, this has attracted many companies to develop metal additive manufacturing machines. A variety of process technology has been developed. Generally, additive manufacturing of metal is in the form of wire and powder. This experiment mainly focuses on the deposition of 316L stainless steel wire with a diameter of 0.8 mm on S45C plate. Directed Energy Deposition (DED) technology was used to feed the wire into the molten pool by two laser beams. In the single-layer deposition experiment, the fixed parameters include the wire feed speed of 320 mm/min and inert gas pressure of 4 kg/ cm2. The variable parameters are laser power of 200, 250, 300, 350, 400, 450, 487 Watt and feed rate of 175, 200, 225, 250, 275, 300, 325 mm/min. The results show that with high laser power of 400, 450 Watt and feed rate of 300 mm/min, better deposition is achieved. Different energies and volumes will affect each other. At the fixed wire feed speed, when the feed rate is fast and the energy per unit length is high, there will be better deposition. High energy but low feed rate will easily yield dripping; Low energy is not easy for material to adhere to the substrate whether the feed rate is fast or slow.

    摘要 I Abstract II 致謝 III 目錄 IV 表索引 VI 圖索引 VII 第1章 緒論 1 1.1研究背景 1 1.2論文架構 2 第2章 文獻回顧 3 2.1 積層製造 3 2.2 金屬的積層製造 4 2.3 金屬積層製造的研究及應用 6 第3章 實驗規劃與設備介紹 9 3.1 實驗目的與規劃 9 3.2 實驗設備介紹 13 3.2.1 實驗機台 13 3.2.2 水冷單模光纖雷射 15 3.2.3 實驗材料與送線機構 19 3.2.4 紅外線熱影像儀 20 3.2.5 惰性氣體 21 3.2.6 實驗配置圖 21 第4章 結果與討論 23 4.1 焦距校正 23 4.2 單層沉積 26 (A) 沉積均勻的線(Stable and Uniform) 27 (B) 結球及不連續(Dripping) 31 (C) 沉積不均的線(Nonuniform) 34 (D) 珍珠狀連續線(Beaded) 38 (E) 殘線無法附著(Stubbing) 42 (F) 可成線不穩定(Unstable) 46 4.3 體積能量密度(ED) 48 4.3.1 總能量 48 4.3.2 總體積 49 4.3.3 體積能量密度 50 4.3.4 單位長度能量與體積 51 第5章 結論 55 5.1 結論 55 5.2 未來展望 56 參考文獻 60

    [1] A. J. Pinkerton, 2016, “[INVITED] Lasers in additive manufacturing,” Optics & Laser Technology, vol. 78, pp. 25-32.
    [2] T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De and W. Zhang, 2018, “Additive manufacturing of metallic components – Process, structure and properties,” Progress in Materials Science, vol. 92, pp. 112-224.
    [3] P. Ghosal, M. C. Majumder and A. Chattopadhyay, 2018, “Study on direct laser metal deposition,” Materials Today: Proceedings, vol. 5, , pp. 12509-12518.
    [4] D. Bourell, J. P. Kruth, M. Leu, G. Levy, D. Rosen, A. M. Beese and A. Clare, 2017, “Materials for additive manufacturing,” CIRP Annals, vol. 66, pp. 659-681.
    [5] Z. Yan, W. Liu, Z. Tang, X. Liu, N. Zhang, M. Li and H. Zhang, 2018, “Review on thermal analysis in laser-based additive manufacturing,” Optics & Laser Technology, vol. 106, pp. 427-441.
    [6] M. Motta, A. G. Demir and B. Previtali, 2018, “High-speed imaging and process characterization of coaxial laser metal wire deposition,” Additive Manufacturing, vol. 22, pp. 497-507.
    [7] A. G. Demir, 2018, “Micro laser metal wire deposition for additive manufacturing of thin-walled structures,” Optics and Lasers in Engineering, vol. 100, pp. 9-17.
    [8] X. Xu, J. Ding, S. Ganguly, C. Diao and S. Williams, 2018, “Oxide accumulation effects on wire+arc layer-by-layer additive manufacture process,” Journal of Materials Processing Technology, vol. 252, pp. 739-750.
    [9] H. Piili, A. Happonen, T. Väistö, V. Venkataramanan, J. Partanen and A. Salminen, 2015, “Cost Estimation of Laser Additive Manufacturing of Stainless Steel,” Physics Procedia, vol. 78, pp. 388-396.
    [10] Y.A. Song, S. Park, D. Choi and H. Jee, 2005, “3D welding and milling: Part I–a direct approach for freeform fabrication of metallic prototypes,” International Journal of Machine Tools and Manufacture, vol. 45, pp. 1057-1062.
    [11] J. Xiong, Y. Li, R. Li and Z. Yin, 2018, “Influences of process parameters on surface roughness of multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing,” Journal of Materials Processing Technology, vol. 252, pp. 128-136.
    [12] Y. Kim, J. Lee and J. H. Oh, 2018, “Fabrication of fine metal patterns using an additive material extrusion process with a molten metal,” Microelectronic Engineering, vol. 191, pp. 10-15.
    [13] P. Wanjara, M. Brochu and M. Jahazi, 2007, “Electron beam freeforming of stainless steel using solid wire feed,” Materials & Design, vol. 28, pp. 2278-2286.
    [14] R. Hu, X. Chen, G. Yang, S. Gong and S. Pang, 2018, “Metal transfer in wire feeding-based electron beam 3D printing: Modes, dynamics, and transition criterion,” International Journal of Heat and Mass Transfer, vol. 126, pp. 877-887.
    [15] D. Ding, Z. Pan, D. Cuiuri and H. Li, 2015, “Wire-feed additive manufacturing of metal components: technologies, developments and future interests,” The International Journal of Advanced Manufacturing Technology, vol. 81, pp. 465-481.
    [16] Y. Li, J. Xiong and Z. Yin, 2019, “Molten pool stability of thin-wall parts in robotic GMA-based additive manufacturing with various position depositions,” Robotics and Computer-Integrated Manufacturing, vol. 56, pp. 1-11.

    無法下載圖示 全文公開日期 2025/01/22 (校內網路)
    全文公開日期 2025/01/22 (校外網路)
    全文公開日期 2025/01/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE