簡易檢索 / 詳目顯示

研究生: Ljalem Hadush Abrha
Ljalem Hadush Abrha
論文名稱: PVDF/石榴石電解質之人工複合介面層應用於 無負極鋰金屬電池
Garnet and PVDF Based Composite Electrolytes for Anode Free Lithium Metal Battery
指導教授: 黃炳照
Bing-joe Hwang
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Bing-joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-huang Wu
吳乃立
Nae-Lih Wu
張仍奎
Jeng-Kuei Chang
鄧熙聖
Hsisheng Teng
程敬義
Jim Cherng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 135
中文關鍵詞: 無負極電池人工固態複合介面層空氣穩定性雙摻雜石榴石固態電解質枝晶抑制電紡織
外文關鍵詞: film-induced solid electrolyte interface, dual doped cubic garnet, air stability, ß-PVDF fiber, suppress dendrite growth, pre-activation cycle
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰金屬電池中鋰枝晶的生成會致使電池之循環壽命減少並產生短路燃燒的危險性,因此,鋰金屬沉積與生長機制與是一迫切且具有表徵性的研究。其中,鋰金屬與電解液之間的反應形成的固態介面層(solid electrolyte interface, SEI)扮演了相當重要的角色。為此,本研究中開發了人工固態複合介面層以抑制鋰枝晶生長並提升電池效率。本研究中將分成四個部分,分別為(1)人工固態複合介面層之技術開發及無負極電池的表徵測試、(2)高空氣穩定度之新型態雙摻雜石榴石固態電解質開發、(3)溫度對-PVDF纖維在無負極電池的電化學表徵、(4) 人工固態複合介面層 -PVDF/5%LLZO/1%LiTFSI之研發與其電化學效能。於第一部分選用高電化學穩定性之石榴石固態材料Li7La2.75Ca0.25Zr1.75Nb0.25O12以及高機械強度與黏附性的β-PVDF並添加少量鋰鹽LiClO4提升鋰離子傳輸速率,透過電紡織的技術塗佈在電極上形成石榴石/高分子人工固態複合介面層Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4。此固態複合介面層不僅讓鋰金屬的沉積更為均勻減少沉積缺陷的產生,更能夠抑制枝晶的生長提升電池整體的循環壽命。此人工石榴石/高分子人工固態複合介面層塗佈在銅箔上與三元系NMC陰極材料組成Cu/NMC無負極電池,於30圈充放電後仍有58.66%的電容量以及高達97.6%的平均庫倫效率,與一般Cu/NMC的無負極電池在相同圈數的電容量35.6%提升23%電容量,改善電池長效循環壽命。由於一般的石榴石材料長時間暴露於空氣下會結晶生成Li2CO3和LiOH 等離子的不良導體並覆蓋於石榴石材料外層,致使整體導離度下降,第二部分中我們利用溶膠-凝膠法藉由摻雜Ga, Nb等元素於LLZO石榴石材料,得到了一具有高導離度且具良好的空氣穩定性的立方相Li5.6La2.9Ga0.26Zr1.87Nb0.05O12 ((Ga, Nb)-LLZO)。該材料雖經長時間暴露在大氣下,於拉曼光譜的分析中仍未於表面生成Li2CO3和LiOH。第三部分討論-PVDF 於無負極電池在不同溫度下(25 oC - 60 oC) 的電化學效能。-PVDF具備良好的楊氏係數49.46 MPa以及好的伸縮率,此可以有效的阻隔碳酸酯類的電解液與活性鋰的反應並抑制枝晶的成長,但由於-PVDF於室溫下的導離度並不具有好,於室溫下並沒辦無法讓鋰金屬能夠進行穩定的沉積,會造成效率降低。但若於高溫60 oC進行活化後,可進一步改善循環穩定性,於Cu/NMC的系統中進行30圈充放電後可維持50%以上的電容量與97.04%的平均庫倫效率。最後一部分我們將-PVDF加入5%高空氣穩定性之(Ga, Nb)-LLZO以及1%高導離度鋰鹽LiTFSI形成人工固態複合介面層-PVDF/5%LLZO/1%LiTFSI,同樣在無負極電池Cu/NMC的體系下進行電化學測試,以定電流0.2 mA/cm2經過30圈充放電後可以得到63.08%的電容量以及97.77%的平均庫效率。-PVDF 抑制鋰枝晶的成長並讓鋰金屬生長平整、(Ga, Nb)-LLZO提供額外鋰離子通道以提升薄膜導離度、LiTFSI與電解液反應並於銅箔表面形成LiF良好的SEI,進一步提升循環穩定性,其電容量保持率於第30圈可提升至64.99%,平均庫倫效率則是提升至98.33%。再來嘗試在-PVDF/5%LLZO/1%LiTFSI在60 oC進行5圈的充放電活化後,更可在30圈充放電後得到極好的平均庫倫效率99.85%。本研究藉由電紡織的技術塗佈製作人工固態複合介面膜有效的增進電池的穩定性與效率,期許本研究可以對無負極的研發有進一步的推進。


    The formation of Li dendrite induces notorious safety issues and poor cycle life of lithium metal batteries. The complex interface between Li metal and electrolyte plays an important role to regulating Li deposition and enhance the cycle life of a battery. Design artificial protective composite films lead to homogenous Li plating and suppressed dendritic growth. This thesis consists (1) Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery. (2) a new dual doped air stabile cubic garnet electrolyte (3) temperature effect on -PVDF fiber and suppression of dendritic growth and (4) improving Li deposition by incorporation of (Ga, Nb)-LLZO, LiTFSI Salt to the -PVDF fiber.
    In the first part Lithium ion-conducting composite film comprising of cubic garnet (Li7La2.75Ca0.25Zr1.75Nb0.25O12) (LLCZN), polyvinylidene fluoride (PVDF) and lithium perchlorate (LiClO4) salt have prepared via electrospinning techniques. The composite film induces inorganic rich (LiF and LiCl) solid electrolyte interphase during the galvanostatic charge/discharge process. In the (Cu@LLCZN/PVDF‖NMC) full cell configuration demonstrate improved capacity retention of 58.66% and an average coulombic efficiency of 97.6% after 30th cycles at a current density of 0.2 mA cm-2. In contrast, the bare Cu‖NMC cell capacity retention was 3.56% in 1M LiPF6 ethylene carbonate (EC) diethyl carbonate (DEC) (1:1 v/v ratio) electrolyte. The second portion was about the new air-stable dual doped (Ga, Nb)-LLZO cubic garnet with a composition of Li5.6La2.9Ga0.26Zr1.87Nb0.05O12 which was prepared via enhanced sol-gel method. Because of doping at the Li, and Zr sites and inherited synergy of Ga and Nb exhibits unique characteristics towards air stability.
    In the third part, a conformal coating was achieved with the widely known PVDF polymer material on the copper (Cu) current collector via an electrospinning technique. A highly polar -PVDF fiber was obtained which exhibited good Li plating/stripping. In the temperature effect study on the -PVDF fiber conducted electrochemical cycling at different temperatures (25 oC - 60 oC) provides superior cyclability. The reaction of carbonated solvent electrolytes with the active lithium was blocked effectively. Therefore, -PVDF fiber imparting a stable SEI composition during plating/stripping at 60 oC, which retains more than 50% with an average coulombic efficiency (CE) of 97.04% at 30th cycle at a current density of 0.2 mA cm-2. The basic benefit of this -PVDF fiber is its flexibility with having about 49.46 MPa modulus. The insulating nature of the polymer leads to surface Li growth. Initiated smooth Lithium nucleation at 60 oC benefited to enhance battery cycle life in an ambient temperature. Once Li grow on the surface next Li follows the redeposited nucleation site. This scenario leads some smooth Li depositions therefore, 99.04% CE was obtained with a retention capacity of 50% at the 30th cycle by activation cycles at high temperature and operated the electrochemical charge/discharge cycle at an ambient temperature.
    In the last section, the air-stable (Ga, Nb)-LLZO was incorporated as an active filler into the -PVDF fiber. The (Cu@5%LLZO -PVDF fiber‖NMC) full cell configuration demonstrates capacity retention and average Coulombic efficiency of 63.08%, 98.23% at 30th cycle and 58.84%, 98.32% at 35th cycle respectively used 1M LiPF6 EC/DEC (1:1 v/v ratio) electrolyte at a current density of 0.2 mA cm-2. Li‖Cu@-PVDF 5%LLZO composite fiber half-cell exhibits negligible polarization compared to Li‖Cu cell (bare Cu). This is due to obtained additional channels through the garnet nanoparticles embedded within the fiber. Therefore, facile uniform plating/stripping of lithium and stable cycling performance was recorded at 60 oC. LiTFSI salt-based fiber demonstrates improved capacity retention of 64.99% and average coulombic efficiency of 98.33% at a current density of 0.2 mA cm-2. After 5 activation cycle at elevated temperature (60 oC), the Cu@-PVDF 5%LLZO-1%LiTFSI fiber‖NMC full cell charge/discharge test operated at 25 oC retained more than 50% of its initial capacity at 30th cycle with 99.85% average Coulombic efficiency.

    Table of Contents 摘要 i Abstract v Acknowledgments vii Table of Contents ix List of Figures xii Chapter 1: Introduction and Background of the Study 1 1.1 Rechargeable lithium batteries 1 1.2 Garnet solid electrolyte in lithium metal batteries 4 1.3 SEI Formation in Lithium Metal Battery 4 Chapter 2: Advantages and Challenges of Lithium Metal Batteries 7 2.1 Lithium Metal Battery 7 2.2 Challenges of Lithium Metal 7 2.3 Theory of Lithium Dendrite Growth 8 2.3.1 Lithium dendrite characterization 10 2.4 Approaches to mitigate challenges of Lithium metal battery 11 2.4.1 Suppression of dendritic growth 11 2.5 Electrolytes of Lithium Metal Batteries (LMBs) 19 2.5.1 Liquid electrolytes 20 2.5.2 Garnet solid electrolytes 20 2.5.3 Polymer Electrolytes 23 2.5.4 Composite polymer electrolytes 23 2.6 Anode Free Lithium metal batteries 25 2.7 Motivation and Objectives of the Study 29 2.7.1 Motivation 29 2.7.2 Objectives 30 Chapter 3: Experimental Section and Characterization 33 3.1 General Experimental Section 33 3.1.1 Chemicals and Reagents 33 3.2 Garnet synthesis for Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 composite film (Part I) 34 3.2.1 Enhanced sol-gel method garnet synthesis 35 3.3 Film preparations: 36 3.4 Preparations of the PVDF polymer fiber 38 3.5 Structural Characterization 39 3.6 Electrochemical performance test 40 Chapter 4: Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 Composite Film Derived Solid Electrolyte Interphase for Anode-Free Lithium Metal Battery 43 4.1 Introduction 43 4.2 Results and Discussion 45 4.2.1 Materials Characterization 45 4.3 Electrochemical Performance 48 4.4 Electrochemical impedance spectroscopic measurement (EIS) 53 4.5 Compositional Analysis of the cycled Cu anode 57 4.6 Cycling performance of Li‖Cu Cell 60 4.7 Summary 63 Chapter 5: A New Dual Doped Cubic Garnet Solid Electrolyte with Superior Air Stability 65 5.1 Introduction 65 5.2 Results and discussion 66 5.3 Ionic conductivity of the garnets 70 5.4 Air stability 71 5.5 Charge effects and pH analysis 76 5.6 Electrochemical performances 79 5.7 Summary 82 Chapter 6: Temperature Effect on -PVDF Fiber and Suppression of Dendritic Growth in Anode Free Battery 83 6.1 Introduction 83 6.2 Results and discussion 84 6.2.1 Solvent Optimizations 84 6.2.2 Thickness optimizations of the fiber 85 6.3 Electrochemical performance evaluation of the -PVDF fiber 87 6.4 Temperature effect on electrochemical charge/discharge performance of the optimized -PVDF fiber 90 6.5 Morphological Analysis 93 6.6 Compositional analysis 96 6.7 Electrochemical performances of Li‖Cu half-cell 97 6.8 Summary 99 Chapter 7: Improving Li Deposition in the -PVDF Composite Fiber with (Ga, Nb)-LLZO and LiTFSI Salt 101 7.1 Introduction 101 7.2 Results and discussion 102 7.2.1 Optimizations of the LLZO/LiTFSI composite fiber 102 7.3 Electrochemical performance evaluations 103 7.4 Morphological Analysis 110 7.5 Compositional analysis 112 7.6 Electrochemical performances of Li‖Cu half-cell 113 7.7 Summary 115 Chapter 8: Conclusions and Future Outlook 117 8.1 Conclusions 117 8.2 Future Outlook 119 Reference: 121 Appendixes 133

    Reference:
    [1] S. Isah, Advanced Materials for Energy Storage Devices, Asian Journal of Nanosciences and Materials, 1 (2018) 90-103.
    [2] D. Deng, Li‐ion batteries: basics, progress, and challenges, Energy Science & Engineering, 3 (2015) 385-418.
    [3] P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angewandte Chemie International Edition, 47 (2008) 2930-2946.
    [4] X.-J. Hong, C.-L. Song, Y. Yang, H.-C. Tan, G.-H. Li, Y.-P. Cai, H. Wang, Cerium Based Metal–Organic Frameworks as an Efficient Separator Coating Catalyzing the Conversion of Polysulfides for High Performance Lithium–Sulfur Batteries, ACS nano, 13 (2019) 1923-1931.
    [5] J. Zheng, M. Tang, Y.Y. Hu, Lithium ion pathway within Li7La3Zr2O12‐polyethylene oxide composite electrolytes, Angewandte Chemie International Edition, 55 (2016) 12538-12542.
    [6] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nature nanotechnology, 12 (2017) 194.
    [7] H. Yang, C. Guo, A. Naveed, J. Lei, J. Yang, Y. Nuli, J. Wang, Recent progress and perspective on lithium metal anode protection, Energy Storage Materials, 14 (2018) 199-221.
    [8] J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.G. Zhang, Anode‐free rechargeable lithium metal batteries, Advanced Functional Materials, 26 (2016) 7094-7102.
    [9] J.-G. Zhang, Anode-less, Nature Energy, (2019) 1-2.
    [10] V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chemical Society Reviews, 43 (2014) 4714-4727.
    [11] C. Cao, Z.-B. Li, X.-L. Wang, X.-B. Zhao, W.-Q. Han, Recent advances in inorganic solid electrolytes for lithium batteries, Frontiers in Energy Research, 2 (2014) 25.
    [12] K.K. Fu, Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao, C. Wang, Y. Wang, Y. Chen, C. Yan, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries, Proceedings of the National Academy of Sciences, 113 (2016) 7094-7099.
    [13] I. Kokal, M. Somer, P. Notten, H. Hintzen, Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure, Solid State Ionics, 185 (2011) 42-46.
    [14] W. Xue, Y. Yang, Q. Yang, Y. Liu, L. Wang, C. Chen, R. Cheng, The effect of sintering process on lithium ionic conductivity of Li 6.4 Al 0.2 La 3 Zr 2 O 12 garnet produced by solid-state synthesis, RSC Advances, 8 (2018) 13083-13088.
    [15] X. Yan, Z. Li, Z. Wen, W. Han, Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte, The Journal of Physical Chemistry C, 121 (2017) 1431-1435.
    [16] M. Rawlence, A.N. Filippin, A. Wackerlin, T.-Y. Lin, E. Cuervo-Reyes, A. Remhof, C. Battaglia, J.L. Rupp, S. Buecheler, Effect of Gallium Substitution on Lithium-Ion Conductivity and Phase Evolution in Sputtered Li7–3 x Ga x La3Zr2O12 Thin Films, ACS applied materials & interfaces, 10 (2018) 13720-13728.
    [17] W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, K. Fu, G. Pastel, C.F. Lin, Y. Mo, Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer, Advanced Materials, 29 (2017) 1606042.
    [18] X. Han, Y. Gong, K.K. Fu, X. He, G.T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nature materials, 16 (2017) 572.
    [19] C. Yang, B. Liu, F. Jiang, Y. Zhang, H. Xie, E. Hitz, L. Hu, Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode, Nano Research, 10 (2017) 4256-4265.
    [20] C.-C. Su, M. He, P.C. Redfern, L.A. Curtiss, I.A. Shkrob, Z. Zhang, Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries, Energy & Environmental Science, 10 (2017) 900-904.
    [21] C. Yan, X.-B. Cheng, C.-Z. Zhao, J.-Q. Huang, S.-T. Yang, Q. Zhang, Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode, Journal of Power Sources, 327 (2016) 212-220.
    [22] X.Q. Zhang, X.B. Cheng, Q. Zhang, Advances in interfaces between Li metal anode and electrolyte, Advanced Materials Interfaces, 5 (2018) 1701097.
    [23] X.B. Cheng, R. Zhang, C.Z. Zhao, F. Wei, J.G. Zhang, Q. Zhang, A review of solid electrolyte interphases on lithium metal anode, Advanced Science, 3 (2016) 1500213.
    [24] S.S. Zhang, Problem, status, and possible solutions for lithium metal anode of rechargeable batteries, ACS Applied Energy Materials, 1 (2018) 910-920.
    [25] J.-i. Yamaki, S.-i. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte, Journal of Power Sources, 74 (1998) 219-227.
    [26] F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, Journal of the American Chemical Society, 135 (2013) 4450-4456.
    [27] Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nature materials, 13 (2014) 961.
    [28] D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo, Q. Zhang, Towards high‐safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy, Advanced Science, 4 (2017) 1600168.
    [29] C.D. Owen, M.G. Norton, Growth mechanism of one dimensional tin nanostructures by electrodeposition, Journal of materials science, 51 (2016) 577-588.
    [30] I. Talukdar, B. Ozturk, B.N. Flanders, T.D. Mishima, Directed growth of single-crystal indium wires, Applied physics letters, 88 (2006) 221907.
    [31] L.V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, N.J. Halas, Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties, Journal of the American Chemical Society, 135 (2013) 3688-3695.
    [32] L. Li, S. Li, Y. Lu, Suppression of dendritic lithium growth in lithium metal-based batteries, Chemical communications, 54 (2018) 6648-6661.
    [33] V. Fleury, J.-N. Chazalviel, M. Rosso, B. Sapoval, The role of the anions in the growth speed of fractal electrodeposits, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 290 (1990) 249-255.
    [34] X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang, F. Wang, H. Duan, M. Tang, H. Jiang, Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates, Nature Energy, 3 (2018) 227.
    [35] M. Petzl, M.A. Danzer, Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries, Journal of Power Sources, 254 (2014) 80-87.
    [36] T. Osaka, T. Momma, Y. Matsumoto, Y. Uchida, Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO 2 addition, Journal of the Electrochemical Society, 144 (1997) 1709-1713.
    [37] C.-Y. Tang, S.J. Dillon, In situ scanning electron microscopy characterization of the mechanism for Li dendrite growth, Journal of The Electrochemical Society, 163 (2016) A1660-A1665.
    [38] J.-H. Cheng, A.A. Assegie, C.-J. Huang, M.-H. Lin, A.M. Tripathi, C.-C. Wang, M.-T. Tang, Y.-F. Song, W.-N. Su, B.J. Hwang, Visualization of lithium plating and stripping via in operando transmission x-ray microscopy, The Journal of Physical Chemistry C, 121 (2017) 7761-7766.
    [39] R. Khurana, J.L. Schaefer, L.A. Archer, G.W. Coates, Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries, Journal of the American Chemical Society, 136 (2014) 7395-7402.
    [40] J.-l. Ma, F.-l. Meng, Y. Yu, D.-p. Liu, J.-m. Yan, Y. Zhang, X.-b. Zhang, Q. Jiang, Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O 2 batteries, Nature chemistry, 11 (2019) 64.
    [41] J. Tan, E.M. Ryan, Structured electrolytes to suppress dendrite growth in high energy density batteries, International Journal of Energy Research, 40 (2016) 1800-1810.
    [42] P. Zou, Y. Wang, S.-W. Chiang, X. Wang, F. Kang, C. Yang, Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries, Nature communications, 9 (2018) 464.
    [43] W. Liu, D. Lin, A. Pei, Y. Cui, Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement, Journal of the American Chemical Society, 138 (2016) 15443-15450.
    [44] E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model, Journal of The Electrochemical Society, 126 (1979) 2047-2051.
    [45] H. Lee, D.J. Lee, Y.-J. Kim, J.-K. Park, H.-T. Kim, A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries, Journal of Power Sources, 284 (2015) 103-108.
    [46] N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Advanced materials, 28 (2016) 1853-1858.
    [47] Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie, R.H. Dauskardt, Y. Cui, An artificial solid electrolyte interphase with high Li‐ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes, Advanced Materials, 29 (2017) 1605531.
    [48] J. Zhu, J. Yang, J. Zhou, T. Zhang, L. Li, J. Wang, Y. Nuli, A stable organic–inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries, Journal of Power Sources, 366 (2017) 265-269.
    [49] R. Xu, X.Q. Zhang, X.B. Cheng, H.J. Peng, C.Z. Zhao, C. Yan, J.Q. Huang, Artificial soft–rigid protective layer for dendrite‐free lithium metal anode, Advanced Functional Materials, 28 (2018) 1705838.
    [50] N.W. Li, Y. Shi, Y.X. Yin, X.X. Zeng, J.Y. Li, C.J. Li, L.J. Wan, R. Wen, Y.G. Guo, A flexible solid electrolyte interphase layer for long‐life lithium metal anodes, Angewandte Chemie International Edition, 57 (2018) 1505-1509.
    [51] E. Cha, M.D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, W. Choi, 2D MoS 2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries, Nature nanotechnology, 13 (2018) 337.
    [52] H. Chen, A. Pei, D. Lin, J. Xie, A. Yang, J. Xu, K. Lin, J. Wang, H. Wang, F. Shi, Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode, Advanced Energy Materials, 9 (2019) 1900858.
    [53] J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen, A. Pei, J. Sun, K. Yan, G. Zhou, J. Xie, C. Liu, Y. Li, Z. Liang, Z. Bao, Y. Cui, Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability, J Am Chem Soc, 139 (2017) 11550-11558.
    [54] D. Lin, Y. Liu, W. Chen, G. Zhou, K. Liu, B. Dunn, Y. Cui, Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon, Nano Lett, 17 (2017) 3731-3737.
    [55] K. Park, J.B. Goodenough, Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li3N, Advanced Energy Materials, (2017) 1700732.
    [56] Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie, R.H. Dauskardt, Y. Cui, An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes, Adv Mater, 29 (2017) 1605531.
    [57] L. Wang, Q. Wang, W. Jia, S. Chen, P. Gao, J. Li, Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries, Journal of Power Sources, 342 (2017) 175-182.
    [58] E. Kazyak, K.N. Wood, N.P. Dasgupta, Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments, Chem. Mat., 27 (2015) 6457-6462.
    [59] S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng, J. Cai, J. Shen, Y. Zhu, K. Zhang, W. Zhang, Lithiophilic Cu-CuO-Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes, Adv. Mater., 30 (2018) 1705830.
    [60] E. Cha, M.D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, W. Choi, 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries, Nature Nanotechnology, (2018).
    [61] S. Liu, X. Xia, Y. Zhong, S. Deng, Z. Yao, L. Zhang, X.-B. Cheng, X. Wang, Q. Zhang, J. Tu, 3D TiC/C Core/Shell Nanowire Skeleton for Dendrite-Free and Long-Life Lithium Metal Anode, Advanced Energy Materials, 8 (2018) 1702322.
    [62] J.-H. Kim, H.-K. Kang, S.-G. Woo, G. Jeong, M.-S. Park, K.J. Kim, J.-S. Yu, T. Yim, Y.N. Jo, H. Kim, K. Zhu, Y.-J. Kim, Oriented TiO2 nanotubes as a lithium metal storage medium, Journal of Electroanalytical Chemistry, 726 (2014) 51-54.
    [63] W. Zhang, H.L. Zhuang, L. Fan, L. Gao, Y. Lu, A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries, Science advances, 4 (2018) eaar4410.
    [64] J. Lopez, D.G. Mackanic, Y. Cui, Z. Bao, Designing polymers for advanced battery chemistries, Nature Reviews Materials, (2019) 1.
    [65] J. Lopez, A. Pei, J.Y. Oh, G.-J.N. Wang, Y. Cui, Z. Bao, Effects of polymer coatings on electrodeposited lithium metal, Journal of the American Chemical Society, 140 (2018) 11735-11744.
    [66] J. Cui, S. Yao, M. Ihsan‐Ul‐Haq, J. Wu, J.K. Kim, Correlation between Li Plating Behavior and Surface Characteristics of Carbon Matrix toward Stable Li Metal Anodes, Advanced Energy Materials, 9 (2019) 1802777.
    [67] L.H. Abrha, T.A. Zegeye, T.T. Hagos, H. Sutiono, T.M. Hagos, G.B. Berhe, C.-J. Huang, S.-K. Jiang, W.-N. Su, Y.-W. Yang, Li7La2. 75Ca0. 25Zr1. 75Nb0. 25O12@ LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery, Electrochimica Acta, (2019) 134825.
    [68] X. Xu, S. Wang, H. Wang, C. Hu, Y. Jin, J. Liu, H. Yan, Recent progresses in the suppression method based on the growth mechanism of lithium dendrite, Journal of energy chemistry, 27 (2018) 513-527.
    [69] N. Pianta, A. Baldini, C. Ferrara, U. Anselmi-Tamburini, C. Milanese, P. Mustarelli, E. Quartarone, A safe quasi-solid electrolyte based on a nanoporous ceramic membrane for high-energy, lithium metal batteries, Electrochimica Acta, 320 (2019) 134539.
    [70] R. Xu, X.-B. Cheng, C. Yan, X.-Q. Zhang, Y. Xiao, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, Artificial Interphases for Highly Stable Lithium Metal Anode, Matter, 1 (2019) 317-344.
    [71] W. Zhou, W.Y. Tong, Y. Wang, D.Y. Yu, P.H.-L. Sit, Joint Theoretical and Experimental Study on the Effects of the Salts in the Graphite-Based Dual-Ion Batteries, The Journal of Physical Chemistry C, 123 (2019) 18132-18141.
    [72] M.A. Monem, K. Trad, N. Omar, O. Hegazy, B. Mantels, G. Mulder, P. Van den Bossche, J. Van Mierlo, Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process, Applied Energy, 152 (2015) 143-155.
    [73] Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan, Y. Cui, Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode, Nature communications, 7 (2016) 10992.
    [74] J. Lopez, D.G. Mackanic, Y. Cui, Z. Bao, Designing polymers for advanced battery chemistries, Nature Reviews Materials, 4 (2019) 312-330.
    [75] B. Hong, H. Fan, X.-B. Cheng, X. Yan, S. Hong, Q. Dong, C. Gao, Z. Zhang, Y. Lai, Q. Zhang, Spatially Uniform Deposition of Lithium Metal in 3D Janus Hosts, Energy Storage Materials, (2018) 259-266.
    [76] K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nature Energy, 1 (2016) 16010.
    [77] C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, L. Hu, Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode, Adv Mater, 29 (2017) 1702714.
    [78] R. Zhang, X. Chen, X. Shen, X.-Q. Zhang, X.-R. Chen, X.-B. Cheng, C. Yan, C.-Z. Zhao, Q. Zhang, Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries, Joule, 2 (2018) 764-777.
    [79] S.S. Zhang, X. Fan, C. Wang, A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery, Electrochimica Acta, 258 (2017) 1201-1207.
    [80] X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang, X. Sun, L.F. Nazar, A facile surface chemistry route to a stabilized lithium metal anode, Nature Energy, 2 (2017) 17119.
    [81] S. Liu, X. Zhang, R. Li, L. Gao, J. Luo, Dendrite-free Li metal anode by lowering deposition interface energy with Cu 99 Zn alloy coating, Energy Storage Materials, 14 (2018) 143-148.
    [82] K. Shen, Z. Wang, X. Bi, Y. Ying, D. Zhang, C. Jin, G. Hou, H. Cao, L. Wu, G. Zheng, Magnetic Field–Suppressed Lithium Dendrite Growth for Stable Lithium‐Metal Batteries, Advanced Energy Materials, (2019) 1900260.
    [83] Y. Li, B. Xu, H. Xu, H. Duan, X. Lü, S. Xin, W. Zhou, L. Xue, G. Fu, A. Manthiram, Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium‐Ion Batteries, Angewandte Chemie International Edition, 56 (2017) 753-756.
    [84] L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, L. Chen, All solid-state polymer electrolytes for high-performance lithium ion batteries, Energy Storage Materials, 5 (2016) 139-164.
    [85] Z. Xue, D. He, X. Xie, Poly (ethylene oxide)-based electrolytes for lithium-ion batteries, Journal of Materials Chemistry A, 3 (2015) 19218-19253.
    [86] M. Ue, K. Uosaki, Recent progress in liquid electrolytes for lithium metal batteries, Current Opinion in Electrochemistry, (2019).
    [87] G. Xu, X. Shangguan, S. Dong, X. Zhou, G. Cui, Key Scientific Issues in Formulating Blended Lithium Salts Electrolyte for Lithium Batteries, Angewandte Chemie, (2019).
    [88] Y. Lu, Q. Zhang, J. Chen, Recent progress on lithium-ion batteries with high electrochemical performance, Science China Chemistry, 62 (2019) 533-548.
    [89] A. Mukhopadhyay, M.K. Jangid, Li metal battery, heal thyself, Science, 359 (2018) 1463-1463.
    [90] W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries, Chemistry of Materials, 28 (2015) 266-273.
    [91] S. Afyon, F. Krumeich, J.L. Rupp, A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries, Journal of Materials Chemistry A, 3 (2015) 18636-18648.
    [92] R.-J. Chen, M. Huang, W.-Z. Huang, Y. Shen, Y.-H. Lin, C.-W. Nan, Effect of calcining and Al doping on structure and conductivity of Li7La3Zr2O12, Solid State Ionics, 265 (2014) 7-12.
    [93] C.A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, W. Weppner, Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor, Inorganic chemistry, 50 (2010) 1089-1097.
    [94] L. Cheng, E.J. Crumlin, W. Chen, R. Qiao, H. Hou, S.F. Lux, V. Zorba, R. Russo, R. Kostecki, Z. Liu, The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes, Physical Chemistry Chemical Physics, 16 (2014) 18294-18300.
    [95] A.C. Luntz, J. Voss, K. Reuter, Interfacial challenges in solid-state Li ion batteries, ACS Publications, 2015.
    [96] C. Liang, N.J. Dudney, E. Rangasamy, S. Gayatri, HIGH-CONDUCTION GE SUBSTITUTED LiAsS4 SOLID ELECTROLYTE, Google Patents, 2016.
    [97] R. Sudo, Y. Nakata, K. Ishiguro, M. Matsui, A. Hirano, Y. Takeda, O. Yamamoto, N. Imanishi, Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal, Solid State Ionics, 262 (2014) 151-154.
    [98] K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S.D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, L. Hu, Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Science Advances, 3 (2017) e1601659.
    [99] R.H. Basappa, T. Ito, H. Yamada, Contact between garnet-type solid electrolyte and lithium metal anode: influence on charge transfer resistance and short circuit prevention, Journal of The Electrochemical Society, 164 (2017) A666-A671.
    [100] L. Cheng, C.H. Wu, A. Jarry, W. Chen, Y. Ye, J. Zhu, R. Kostecki, K. Persson, J. Guo, M. Salmeron, Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes, ACS applied materials & interfaces, 7 (2015) 17649-17655.
    [101] S.-W. Baek, J.-M. Lee, T.Y. Kim, M.-S. Song, Y. Park, Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries, Journal of Power Sources, 249 (2014) 197-206.
    [102] D.W. McOwen, S. Xu, Y. Gong, Y. Wen, G.L. Godbey, J.E. Gritton, T.R. Hamann, J. Dai, G.T. Hitz, L. Hu, 3D‐Printing Electrolytes for Solid‐State Batteries, Advanced Materials, 30 (2018) 1707132.
    [103] M. Keller, A. Varzi, S. Passerini, Hybrid electrolytes for lithium metal batteries, Journal of Power Sources, 392 (2018) 206-225.
    [104] J. Dai, C. Yang, C. Wang, G. Pastel, L. Hu, Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization, Advanced Materials, 30 (2018) 1802068.
    [105] J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao, Y. Shi, J.B. Goodenough, G. Yu, A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte, Angewandte Chemie International Edition, 57 (2018) 2096-2100.
    [106] Y. Li, X. Chen, A. Dolocan, Z. Cui, S. Xin, L. Xue, H. Xu, K. Park, J.B. Goodenough, Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries, Journal of the American Chemical Society, 140 (2018) 6448-6455.
    [107] A. Sharafi, S. Yu, M. Naguib, M. Lee, C. Ma, H.M. Meyer, J. Nanda, M. Chi, D.J. Siegel, J. Sakamoto, Impact of air exposure and surface chemistry on Li–Li 7 La 3 Zr 2 O 12 interfacial resistance, Journal of Materials Chemistry A, 5 (2017) 13475-13487.
    [108] R.H. Brugge, A.O. Hekselman, A. Cavallaro, F.M. Pesci, R.J. Chater, J.A. Kilner, A. Aguadero, Garnet electrolytes for solid state batteries: visualization of moisture-induced chemical degradation and revealing its impact on the Li-ion dynamics, Chemistry of Materials, 30 (2018) 3704-3713.
    [109] S.A. Pervez, M.A. Cambaz, V. Thangadurai, M. Fichtner, Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook, ACS applied materials & interfaces, 11 (2019) 22029-22050.
    [110] H. Duan, Y.-X. Yin, Y. Shi, P.-F. Wang, X.-D. Zhang, C.-P. Yang, J.-L. Shi, R. Wen, Y.-G. Guo, L.-J. Wan, Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers, Journal of the American Chemical Society, 140 (2017) 82-85.
    [111] N. Zhao, W. Khokhar, Z. Bi, C. Shi, X. Guo, L.-Z. Fan, C.-W. Nan, Solid garnet batteries, Joule, (2019).
    [112] V. Di Noto, S. Lavina, G.A. Giffin, E. Negro, B. Scrosati, Polymer electrolytes: Present, past and future, Elsevier, 2011.
    [113] S. Ramesh, S. Lu, Enhancement of ionic conductivity and structural properties by BMIMTf ionic liquid in P (VdF-HFP)-based polymer electrolytes, J Appl Polym Sci, 126 (2012) 484-492.
    [114] P.G. Bruce, Solid state electrochemistry, Cambridge university press1997.
    [115] K.S. Ngai, S. Ramesh, K. Ramesh, J.C. Juan, A review of polymer electrolytes: fundamental, approaches and applications, Ionics, 22 (2016) 1259-1279.
    [116] C.A. Vincent, Polymer electrolytes, Progress in solid state chemistry, 17 (1987) 145-261.
    [117] M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes, Nano letters, 9 (2009) 1872-1876.
    [118] S. Ramesh, C.-W. Liew, E. Morris, R. Durairaj, Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA–PVC blend-based polymer electrolytes, Thermochimica Acta, 511 (2010) 140-146.
    [119] C.W. Liew, R. Durairaj, S. Ramesh, Rheological Studies of PMMA–PVC Based Polymer Blend Electrolytes with LiTFSI as Doping Salt, PloS one, 9 (2014) e102815.
    [120] J. Hu, J. Luo, P. Wagner, C. Agert, O. Conrad, Thermal Behaviours and Single Cell Performance of PBI‐OO/PFSA Blend Membranes Composited with Lewis Acid Nanoparticles for Intermediate Temperature DMFC Application, Fuel Cells, 11 (2011) 756-763.
    [121] J. Hao, X. Li, S. Yu, Y. Jiang, J. Luo, Z. Shao, B. Yi, Development of proton-conducting membrane based on incorporating a proton conductor 1, 2, 4-triazolium methanesulfonate into the Nafion membrane, Journal of Energy Chemistry, 24 (2015) 199-206.
    [122] G. Katsaros, T. Stergiopoulos, I. Arabatzis, K. Papadokostaki, P. Falaras, A solvent-free composite polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells, Journal of photochemistry and photobiology A: chemistry, 149 (2002) 191-198.
    [123] F.M. Gray, Polymer electrolytes, Royal Society of Chemistry1997.
    [124] J. Adebahr, N. Byrne, M. Forsyth, D.R. Macfarlane, P. Jacobsson, Enhancement of ion dynamics in PMMA-based gels with addition of TiO2 nano-particles, Electrochimica acta, 48 (2003) 2099-2103.
    [125] J. Stevens, W. Wieczorek, Ionically conducting polyether composites, Canadian journal of chemistry, 74 (1996) 2106-2113.
    [126] P.H. de Souza, R.F. Bianchi, K. Dahmouche, P. Judeinstein, R.M. Faria, T.J. Bonagamba, Solid-State NMR, Ionic Conductivity, and Thermal Studies of Lithium-doped Siloxane− Poly (propylene glycol) Organic− Inorganic Nanocomposites, Chemistry of materials, 13 (2001) 3685-3692.
    [127] N.C. Mello, T.J. Bonagamba, H. Panepucci, K. Dahmouche, P. Judeinstein, M.A. Aegerter, NMR Study of Ion-Conducting Organic− Inorganic Nanocomposites Poly (ethylene glycol)− Silica− LiClO4, Macromolecules, 33 (2000) 1280-1288.
    [128] B. Ameduri, From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends, Chemical Reviews, 109 (2009) 6632-6686.
    [129] A. Lovinger, D. Reed, Inhomogeneous thermal degradation of poly (vinylidene fluoride) crystallized from the melt, Macromolecules, 13 (1980) 989-994.
    [130] P. Singh, H. Borkar, B. Singh, V. Singh, A. Kumar, Ferroelectric polymer-ceramic composite thick films for energy storage applications, AIP advances, 4 (2014) 087117.
    [131] I.Y. Abdullah, M.H.H. Jumali, M. Yahaya, H.M. Shanshool, Facile formation of [beta] poly (vinylidene fluoride) films using the short time annealing process, Advances in Environmental Biology, 9 (2015) 20-28.
    [132] J.B. Goodenough, Y. Kim, Challenges for rechargeable batteries, Journal of Power Sources, 196 (2011) 6688-6694.
    [133] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, X. He, Thermal runaway mechanism of lithium ion battery for electric vehicles: A review, Energy Storage Materials, 10 (2018) 246-267.
    [134] R. Weber, M. Genovese, A. Louli, S. Hames, C. Martin, I.G. Hill, J. Dahn, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte, Nature Energy, 4 (2019) 683-689.
    [135] B. Neudecker, N. Dudney, J. Bates, “Lithium‐free” thin‐film battery with in situ plated Li anode, Journal of the Electrochemical Society, 147 (2000) 517-523.
    [136] J. Alvarado, M.A. Schroeder, T.P. Pollard, X. Wang, J.Z. Lee, M. Zhang, T. Wynn, M. Ding, O. Borodin, Y.S. Meng, Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes, Energy & Environmental Science, 12 (2019) 780-794.
    [137] Z.L. Brown, B.L. Lucht, Synergistic Performance of Lithium Difluoro (oxalato) borate and Fluoroethylene Carbonate in Carbonate Electrolytes for Lithium Metal Anodes, Journal of The Electrochemical Society, 166 (2019) A5117-A5121.
    [138] W. Fan, X. Zhang, C. Li, Dual Insurance Design Achieves Long-Life Cycling of Li-Metal Batteries under a Wide Temperature Range, ACS Applied Energy Materials, 2 (2019) 5292-5299.
    [139] R. Pfenninger, M. Struzik, I. Garbayo, E. Stilp, J.L. Rupp, A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films, Nature Energy, (2019) 1.
    [140] B.J. Neudecker, N.J. Dudney, J.B. Bates, “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode, Journal of The Electrochemical Society, 147 (2000) 517-523.
    [141] J. Luo, C.C. Fang, N.L. Wu, Anodes: High Polarity Poly (vinylidene difluoride) Thin Coating for Dendrite‐Free and High‐Performance Lithium Metal Anodes (Adv. Energy Mater. 2/2018), Advanced Energy Materials, 8 (2018) 1870008.
    [142] A.A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, B.-J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale, 10 (2018) 6125-6138.
    [143] A.A. Assegie, C.-C. Chung, M.-C. Tsai, W.-N. Su, C.-W. Chen, B.-J. Hwang, Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries, Nanoscale, 11 (2019) 2710-2720.
    [144] A.P. Cohn, N. Muralidharan, R. Carter, K. Share, C.L. Pint, Anode-Free Sodium Battery through in Situ Plating of Sodium Metal, Nano Lett, 17 (2017) 1296-1301.
    [145] S. Liu, S. Tang, X. Zhang, A. Wang, Q.H. Yang, J. Luo, Porous Al Current Collector for Dendrite-Free Na Metal Anodes, Nano Lett, 17 (2017) 5862-5868.
    [146] A. Rudola, S.R. Gajjela, P. Balaya, High energy density in - situ sodium plated battery with current collector foil as anode, Electrochemistry Communications, 86 (2018) 157-160.
    [147] S. Tang, Z. Qiu, X.-Y. Wang, Y. Gu, X.-G. Zhang, W.-W. Wang, J.-W. Yan, M.-S. Zheng, Q.-F. Dong, B.-W. Mao, A Room-Temperature Sodium Metal Anode Enabled by a Sodiophilic Layer, Nano Energy, (2018) 101-106.
    [148] C.-H. Lee, G.-J. Park, J.-H. Choi, C.-H. Doh, D.-S. Bae, J.-S. Kim, S.-M. Lee, Low temperature synthesis of garnet type solid electrolyte by modified polymer complex process and its characterization, Materials Research Bulletin, 83 (2016) 309-315.
    [149] Y. Song, L. Yang, W. Zhao, Z. Wang, Y. Zhao, Z. Wang, Q. Zhao, H. Liu, F. Pan, Revealing the Short‐Circuiting Mechanism of Garnet‐Based Solid‐State Electrolyte, Advanced Energy Materials, (2019) 1900671.
    [150] H. Wang, M. Matsui, H. Kuwata, H. Sonoki, Y. Matsuda, X. Shang, Y. Takeda, O. Yamamoto, N. Imanishi, A reversible dendrite-free high-areal-capacity lithium metal electrode, Nature communications, 8 (2017) 15106.
    [151] J. Lang, L. Qi, Y. Luo, H. Wu, High performance lithium metal anode: progress and prospects, Energy Storage Materials, 7 (2017) 115-129.
    [152] L. Ma, M.S. Kim, L.A. Archer, Stable artificial solid electrolyte interphases for lithium batteries, Chemistry of Materials, 29 (2017) 4181-4189.
    [153] X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao, D. Lin, C. Zu, O. Sheng, W. Zhang, H.-W. Lee, Y. Cui, Solid-State Lithium–Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer, Nano Letters, 17 (2017) 2967-2972.
    [154] L. Yayuan, L. Dingchang, Y.P. Yan, L. Kai, X. Jin, D.R. H., C. Yi, An Artificial Solid Electrolyte Interphase with High Li‐Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes, Advanced Materials, 29 (2017) 1605531.
    [155] T.A. Zegeye, C.F.J. Kuo, H.M. Chen, A.M. Tripathi, M.H. Lin, J.H. Cheng, A.D. Duma, W.N. Su, B.J. Hwang, Dual‐Confined Sulfur in Hybrid Nanostructured Materials for Enhancement of Lithium‐Sulfur Battery Cathode Capacity Retention, ChemElectroChem, 4 (2017) 636-647.
    [156] C. Ma, E. Rangasamy, C. Liang, J. Sakamoto, K.L. More, M. Chi, Excellent Stability of a Lithium‐Ion‐Conducting Solid Electrolyte upon Reversible Li+/H+ Exchange in Aqueous Solutions, Angewandte Chemie International Edition, 54 (2015) 129-133.
    [157] Z. Liang, D. Lin, J. Zhao, Z. Lu, Y. Liu, C. Liu, Y. Lu, H. Wang, K. Yan, X. Tao, Y. Cui, Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating, Proceedings of the National Academy of Sciences, 113 (2016) 2862-2867.
    [158] P. Barai, K. Higa, V. Srinivasan, Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies, Physical Chemistry Chemical Physics, 19 (2017) 20493-20505.
    [159] K.-W. Kim, H.W. Kim, Y. Kim, J.-K. Kim, Composite gel polymer electrolyte with ceramic particles for LiNi1/3Mn1/3Co1/3O2-Li4Ti5O12 lithium ion batteries, Electrochimica Acta, 236 (2017) 394-398.
    [160] H. Jo, J. Kim, D.-T. Nguyen, K.K. Kang, D.-M. Jeon, A.-R. Yang, S.-W. Song, Stabilizing the solid electrolyte interphase layer and cycling performance of silicon–graphite battery anode by using a binary additive of fluorinated carbonates, The Journal of Physical Chemistry C, 120 (2016) 22466-22475.
    [161] T.A. Zegeye, M.-C. Tsai, J.-H. Cheng, M.-H. Lin, H.-M. Chen, J. Rick, W.-N. Su, C.-F.J. Kuo, B.-J. Hwang, Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries, Journal of Power Sources, 353 (2017) 298-311.
    [162] W. Liu, W. Li, D. Zhuo, G. Zheng, Z. Lu, K. Liu, Y. Cui, Core–shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes, ACS central science, 3 (2017) 135-140.
    [163] J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi, A. Pei, J. Sun, R. Zhang, B. Kong, R. Subbaraman, Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode, Science advances, 3 (2017) eaao3170.
    [164] B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, J. Zhu, Poly (dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High‐Performance Lithium‐Metal Battery Anodes, Advanced Materials, 29 (2017) 1603755.
    [165] K. Liu, A. Pei, H.R. Lee, B. Kong, N. Liu, D. Lin, Y. Liu, C. Liu, P.-c. Hsu, Z. Bao, Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer, Journal of the American Chemical Society, 139 (2017) 4815-4820.
    [166] X.B. Cheng, T.Z. Hou, R. Zhang, H.J. Peng, C.Z. Zhao, J.Q. Huang, Q. Zhang, Dendrite‐free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Advanced Materials, 28 (2016) 2888-2895.
    [167] K. Yan, H.-W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode, Nano letters, 14 (2014) 6016-6022.
    [168] A.C. Kozen, C.-F. Lin, A.J. Pearse, M.A. Schroeder, X. Han, L. Hu, S.-B. Lee, G.W. Rubloff, M. Noked, Next-generation lithium metal anode engineering via atomic layer deposition, Acs Nano, 9 (2015) 5884-5892.
    [169] S.H. Lee, J.R. Harding, D.S. Liu, J.M. D’Arcy, Y. Shao-Horn, P.T. Hammond, Li-anode protective layers for Li rechargeable batteries via layer-by-layer approaches, Chemistry of Materials, 26 (2014) 2579-2585.
    [170] B. Xu, H. Duan, H. Liu, C.A. Wang, S. Zhong, Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries, ACS applied materials & interfaces, 9 (2017) 21077-21082.
    [171] W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.-M. Chiang, Y. Cui, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nature communications, 6 (2015) 7436.
    [172] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials today, 18 (2015) 252-264.
    [173] T.M. Hagos, G.B. Berhe, T.T. Hagos, H.K. Bezabh, L.H. Abrha, T.T. Beyene, C.-J. Huang, Y.-W. Yang, W.-N. Su, H. Dai, Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries, Electrochimica Acta, (2019).
    [174] J.-W. Kim, K.-S. Ji, J.-P. Lee, J.-W. Park, Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2, Journal of power sources, 119 (2003) 415-421.
    [175] B.D. Adams, J. Zheng, X. Ren, W. Xu, J.G. Zhang, Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries, Advanced Energy Materials, 8 (2018) 1702097.
    [176] Y. Zhang, W. Luo, C. Wang, Y. Li, C. Chen, J. Song, J. Dai, E.M. Hitz, S. Xu, C. Yang, High-capacity, low-tortuosity, and channel-guided lithium metal anode, Proceedings of the National Academy of Sciences, 114 (2017) 3584-3589.
    [177] C.-Z. Zhao, X.-Q. Zhang, X.-B. Cheng, R. Zhang, R. Xu, P.-Y. Chen, H.-J. Peng, J.-Q. Huang, Q. Zhang, An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes, Proceedings of the National Academy of Sciences, 114 (2017) 11069-11074.
    [178] Y. Gao, R. Yi, Y.C. Li, J. Song, S. Chen, Q. Huang, T.E. Mallouk, D. Wang, General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes, Journal of the American Chemical Society, 139 (2017) 17359-17367.
    [179] A.M. Stephan, K. Nahm, Review on composite polymer electrolytes for lithium batteries, Polymer, 47 (2006) 5952-5964.
    [180] H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano today, 7 (2012) 414-429.
    [181] D.M. Smith, B. Dong, R.W. Marron, M.J. Birnkrant, Y.A. Elabd, L.V. Natarajan, V.P. Tondiglia, T.J. Bunning, C.Y. Li, Tuning ion conducting pathways using holographic polymerization, Nano letters, 12 (2011) 310-314.
    [182] A.C. Balazs, T. Emrick, T.P. Russell, Nanoparticle polymer composites: where two small worlds meet, Science, 314 (2006) 1107-1110.
    [183] Y.-J. Wang, Y. Pan, D. Kim, Conductivity studies on ceramic Li1. 3Al0. 3Ti1. 7 (PO4) 3-filled PEO-based solid composite polymer electrolytes, Journal of power sources, 159 (2006) 690-701.
    [184] J. Luo, C.C. Fang, N.L. Wu, High Polarity Poly (vinylidene difluoride) Thin Coating for Dendrite‐Free and High‐Performance Lithium Metal Anodes, Advanced Energy Materials, 8 (2018) 1701482.
    [185] P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, 55 (2010) 6332-6341.
    [186] W. Xia, B. Xu, H. Duan, Y. Guo, H. Kang, H. Li, H. Liu, Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles, ACS applied materials & interfaces, 8 (2016) 5335-5342.
    [187] S. Chu, Y. Cui, N. Liu, The path towards sustainable energy, Nature materials, 16 (2017) 16.
    [188] C. Sugiura, Fluorine Kα X-ray emission spectra from selected metal fluorides, Japanese journal of applied physics, 31 (1992) 311.
    [189] Y. Zhu, J.G. Connell, S. Tepavcevic, P. Zapol, R. Garcia‐Mendez, N.J. Taylor, J. Sakamoto, B.J. Ingram, L.A. Curtiss, J.W. Freeland, Dopant‐Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal, Advanced Energy Materials, 9 (2019) 1803440.
    [190] H. Yu, J. Zhao, L. Ben, Y. Zhan, Y. Wu, X. Huang, Dendrite-free lithium deposition with self-aligned columnar structure in a carbonate–ether mixed electrolyte, ACS Energy Letters, 2 (2017) 1296-1302.
    [191] D. Kalita, S. Lee, K. Lee, D. Ko, Y. Yoon, Ionic conductivity properties of amorphous Li–La–Zr–O solid electrolyte for thin film batteries, Solid State Ionics, 229 (2012) 14-19.
    [192] P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics, 180 (2009) 911-916.
    [193] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A lithium superionic conductor, Nature materials, 10 (2011) 682.
    [194] A. Belous, G. Novitskaya, S. Polyanetskaya, Y.I. Gornikov, Investigation into complex oxides of La 2/3-x Li 3x TiO 3 composition, Izv. Akad. Nauk SSSR, Neorg. Mater, 23 (1987) 470-472.
    [195] J. Bates, N. Dudney, G. Gruzalski, R. Zuhr, A. Choudhury, C. Luck, J. Robertson, Electrical properties of amorphous lithium electrolyte thin films, Solid state ionics, 53 (1992) 647-654.
    [196] L. Zhang, L. Cheng, J. Cabana, G. Chen, M.M. Doeff, T.J. Richardson, Effect of lithium borate addition on the physical and electrochemical properties of the lithium ion conductor Li3. 4Si0. 4P0. 6O4, Solid State Ionics, 231 (2013) 109-115.
    [197] R. Wagner, D. Rettenwander, G.n.J. Redhammer, G. Tippelt, G. Sabathi, M.E. Musso, B. Stanje, M. Wilkening, E. Suard, G. Amthauer, Synthesis, Crystal Structure, and Stability of Cubic Li7–x La3Zr2–x Bi x O12, Inorganic chemistry, 55 (2016) 12211-12219.
    [198] P.J. Kumar, K. Nishimura, M. Senna, A. Düvel, P. Heitjans, T. Kawaguchi, N. Sakamoto, N. Wakiya, H. Suzuki, A novel low-temperature solid-state route for nanostructured cubic garnet Li 7 La 3 Zr 2 O 12 and its application to Li-ion battery, RSC Advances, 6 (2016) 62656-62667.
    [199] Y. Li, Y. Cao, X. Guo, Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6. 75La3Zr1. 75Ta0. 25O12 solid electrolytes, Solid State Ionics, 253 (2013) 76-80.
    [200] S. Cao, S. Song, X. Xiang, Q. Hu, C. Zhang, Z. Xia, Y. Xu, W. Zha, J. Li, P.M. Gonzale, Modeling, Preparation, and Elemental Doping of Li7La3Zr2O12 Garnet-Type Solid Electrolytes: A Review, Journal of the Korean Ceramic Society, 56 (2019) 111-129.
    [201] R. Jalem, M. Rushton, W. Manalastas Jr, M. Nakayama, T. Kasuga, J.A. Kilner, R.W. Grimes, Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes, Chemistry of Materials, 27 (2015) 2821-2831.
    [202] J. Wolfenstine, J. Ratchford, E. Rangasamy, J. Sakamoto, J.L. Allen, Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12, Materials Chemistry and physics, 134 (2012) 571-575.
    [203] D. Rettenwander, C.A. Geiger, M. Tribus, P. Tropper, G. Amthauer, A Synthesis and Crystal Chemical Study of the Fast Ion Conductor Li7–3 x Ga x La3 Zr2O12 with x= 0.08 to 0.84, Inorganic chemistry, 53 (2014) 6264-6269.
    [204] K. Ishiguro, Y. Nakata, M. Matsui, I. Uechi, Y. Takeda, O. Yamamoto, N. Imanishi, Stability of Nb-doped cubic Li7La3Zr2O12 with lithium metal, Journal of The Electrochemical Society, 160 (2013) A1690-A1693.
    [205] K. Hofstetter, A.J. Samson, J. Dai, J.E. Gritton, L. Hu, E.D. Wachsman, V. Thangadurai, Electrochemical Stability of Garnet-Type Li7La2. 75Ca0. 25Zr1. 75Nb0. 25O12 with and without Atomic Layer Deposited-Al2O3 under CO2 and Humidity, Journal of The Electrochemical Society, 166 (2019) A1844-A1852.
    [206] Z.F. Yow, Y.L. Oh, W. Gu, R.P. Rao, S. Adams, Effect of Li+/H+ exchange in water treated Ta-doped Li7La3Zr2O12, Solid State Ionics, 292 (2016) 122-129.
    [207] C. Liu, K. Rui, C. Shen, M.E. Badding, G. Zhang, Z. Wen, Reversible ion exchange and structural stability of garnet-type Nb-doped Li7La3Zr2O12 in water for applications in lithium batteries, Journal of Power Sources, 282 (2015) 286-293.
    [208] W. Xia, B. Xu, H. Duan, X. Tang, Y. Guo, H. Kang, H. Li, H. Liu, Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2, Journal of the American Ceramic Society, 100 (2017) 2832-2839.
    [209] X. Zhan, S. Lai, M.P. Gobet, S.G. Greenbaum, M. Shirpour, Defect chemistry and electrical properties of garnet-type Li 7 La 3 Zr 2 O 12, Physical Chemistry Chemical Physics, 20 (2018) 1447-1459.
    [210] H. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo, X. Yang, Y. Liu, X. Guo, X. Sun, In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries, Nano Energy, 61 (2019) 119-125.
    [211] B.H. Toby, R.B. Von Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package, Journal of Applied Crystallography, 46 (2013) 544-549.
    [212] R. Murugan, V. Thangadurai, W. Weppner, Lattice parameter and sintering temperature dependence of bulk and grain-boundary conduction of garnet-like solid Li-electrolytes, Journal of The Electrochemical Society, 155 (2008) A90-A101.
    [213] K. Hofstetter, A.J. Samson, S. Narayanan, V. Thangadurai, Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium, Journal of Power Sources, 390 (2018) 297-312.
    [214] L. He, Q. Sun, C. Chen, J.A.S. Oh, J. Sun, M. Li, W. Tu, H.-H. Zhou, K. Zeng, L. Lu, Failure Mechanism and Interface Engineering for NASICON Structure All-solid-state Lithium Metal Batteries, ACS applied materials & interfaces, (2019).
    [215] J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nature Reviews Materials, 1 (2016) 16013.
    [216] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O 2 and Li–S batteries with high energy storage, Nature materials, 11 (2012) 19.
    [217] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific2011, pp. 171-179.
    [218] K. Yatabe, T. Horiba, K. Kubota, M. Fukunishi, N. Yabuuchi, H. Oji, J.-Y. Son, Y.-T. Cui, S. Yasuno, S. Komaba, Effect of diphenylethane as an electrolyte additive to enhance high-temperature durability of LiCoO2/graphite cells, Electrochimica Acta, 270 (2018) 120-128.
    [219] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, Journal of power sources, 208 (2012) 210-224.
    [220] A.L. Michan, B.S. Parimalam, M. Leskes, R.N. Kerber, T. Yoon, C.P. Grey, B.L. Lucht, Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation, Chemistry of Materials, 28 (2016) 8149-8159.
    [221] Z. Lei, J. Zhang, L.L. Zhang, N.A. Kumar, X. Zhao, Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties, Energy & Environmental Science, 9 (2016) 1891-1930.
    [222] Z. Lu, Z. Zhang, X. Chen, Q. Chen, F. Ren, M. Wang, S. Wu, Z. Peng, D. Wang, J. Ye, Improving Li anode performance by a porous 3D carbon paper host with plasma assisted sponge carbon coating, Energy Storage Materials, 11 (2018) 47-56.
    [223] D. Lin, Y. Liu, A. Pei, Y. Cui, Nanoscale perspective: Materials designs and understandings in lithium metal anodes, Nano Research, 10 (2017) 4003-4026.
    [224] M. Herrero-Herrero, J.-A. Gómez-Tejedor, A. Vallés-Lluch, PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems, European Polymer Journal, 99 (2018) 445-455.
    [225] X. Wang, X. Wei, H. Dai, Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge, Journal of Energy Storage, 21 (2019) 618-631.
    [226] E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives, Chemical Society Reviews, 40 (2011) 2525-2540.
    [227] J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, Journal of Power Sources, 195 (2010) 4554-4569.
    [228] J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries, Nature nanotechnology, (2019) 1.
    [229] X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang, S. Dong, Impedance study of (PEO) 10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes, Electrochimica acta, 46 (2001) 1829-1836.
    [230] B. Kumar, L.G. Scanlon, Polymer-ceramic composite electrolytes, Journal of power sources, 52 (1994) 261-268.

    無法下載圖示 全文公開日期 2025/01/22 (校內網路)
    全文公開日期 2025/01/22 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE