簡易檢索 / 詳目顯示

研究生: 黃健淳
Chien-Chun Huang
論文名稱: 具高頻寬低雜訊之寬範圍輸出雙向直流-直流電能轉換器
A Wide-Output-Range Bi-directional DC-DC Converter with High-Bandwidth and Low-Switching-Noise Features
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 呂景山
Ching-Shan Leu
劉益華
Yi-Hua Liu
劉邦榮
Pang-Jung Liu
邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 178
中文關鍵詞: 高頻寬寬範圍調壓切換雜訊輸出電流漣波雙向直流- 直流轉換器四階濾波器
外文關鍵詞: high-frequency bandwidth, wide range voltage regulation, switching noise, output current ripple, bidirectional DC-DC converter, fourth-order filter
相關次數: 點閱:253下載:52
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目標為提出一具備極低的輸出切換雜訊、極低的輸出電流
    漣波、高頻寬、可寬範圍調壓的雙向直流-直流電源轉換器。為達到此
    目的,本論文先從濾波器之非理想特性與輸入濾波器波形之傅立葉分
    析來探討切換雜訊的成因,其後針對分析結果將本論文分為三個方向
    進行研究:一,減少元件上的寄生元件使濾波器趨近理想;二,減緩
    濾波器的輸入電壓變化斜率,減少輸入訊號之高頻成分;三,減少流
    入輸出電容的漣波電流變化量與漣波值,降低輸出電容之寄生電感造
    成的切換雜訊。研究方向一,先了解寄生元件的成因以降低其值,爾
    後嘗試利用外接線路做為補償寄生元件,分析其應用與限制。研究方
    向二,本文提出一新型之雙邊零電壓切換雙向直流-直流轉換器來同
    時減緩輸入濾波器電壓波形之上升與下降斜率。由實作結果可知,藉
    由新型轉換器可有效將切換雜訊減少76.9%。研究方向三,為滿足極
    低的輸出電流漣波規格與進一步降低切換雜訊,本文繼而分別討論主
    動型消除與被動型電流漣波消除技術。比較各種方式之優缺點後,因
    考量輸出切換雜訊,最終選用四階LCLC 濾波器作為解決方案。針對
    四階濾波器的元件設計提出一快速概算流程,且以降壓型轉換器搭配
    四階濾波器推導小訊號模型,分析其四階濾波器的設計選擇對於小訊
    號輸出阻抗的影響,並提供一電壓與電流回授補償之補償器設計流程。
    最後以模擬驗證小訊號模型的正確性與閉迴路的系統表現。


    The goal of this thesis is to propose a bidirectional DC-DC power
    converter with the extremely low output switching noise, very low output
    current ripple, high-frequency bandwidth, and wide range voltage
    regulation. In order to achieve this goal, this paper first discusses the cause
    of switching noise from the non-ideal characteristics of the filter and the
    Fourier analysis of the input filter waveform. Then the paper divides the
    paper into three directions for the analysis results: First, reduce the parasitic
    components on the component make the filter close to ideal; second, slow
    down the slope of the input voltage of the filter, reduce the high frequency
    component of the input signal; third, reduce the ripple current variation and
    ripple value into the output capacitor, and reduce the output switching noise
    caused by the parasitic inductance of the capacitor. In the first direction of
    research, first, understand the cause of parasitic components to reduce their
    values, and then try to use external circuits as compensation for parasitic
    components, and analyze their applications and limitations. In the second
    direction of research, this paper proposes a new type of bilateral zerovoltage
    switching bidirectional DC-DC converter to simultaneously slow
    down the rising and falling slopes of the input filter voltage waveform. As
    a result of the implementation, it is known that the switching noise can be
    effectively reduced by 76.9% by the new converter. In the third direction
    of research, in order to meet the extremely low output current chopping
    specifications and further reduce the switching noise, this paper then
    discusses the active elimination and passive current chopping cancellation
    techniques. After comparing the advantages and disadvantages of various
    methods, considering the output switching noise, the fourth-order LCLC
    filter is finally selected as the solution. A fast estimation procedure is
    proposed for the component design of the fourth-order filter, and the small signal model is derived by using the buck converter with the fourth-order
    filter, and the influence of the design choice of the fourth-order filter on the
    output impedance of the small signal is analyzed. Compensator design flow
    for voltage and current feedback compensation. Finally, the simulation
    verifies the correctness of the small signal model and the performance of
    the closed-loop system.

    摘要 i Abstract iii 誌 謝 v 目 錄 vii 圖 目 錄 x 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 2 1.3 論文大綱 3 第二章 切換式電源雜訊來源與分析 6 2.1 非理想LC濾波器 6 2.2 輸入電壓波形之傅立葉分析 8 2.3 電容電流漣波對於輸出漣波的影響 11 第三章 減少或補償寄生元件造成的影響 13 3.1 電感之寄生電容 13 3.1.1 匝與匝之間的電容 13 3.1.2 層與層之間的電容 17 3.1.3 不同連接方式下的層與層電容 21 3.2 電感寄生電容消除技術 24 3.3 電容之寄生元件 30 3.3.1 陶瓷電容 30 3.3.2 薄膜電容 33 3.3.3 電解電容 37 3.4 電容寄生元件消除技術 39 第四章 雙邊零電壓切換雙向轉換器 44 4.1 零電壓切換雙向轉換器之文獻回顧 44 4.2 雙邊零電壓切換降壓型轉換器 52 4.2.1 本文架構演化過程 52 4.2.2 動作區間介紹 55 4.2.3 架構特性分析 71 4.2.4 諧振元件設計 75 4.2.5 模擬實驗結果 77 第五章 電流漣波消除技術 86 5.1 主動型消除技術 86 5.2 被動型消除技術 92 5.3 被動型消除技術之架構轉換 96 5.4 四階LCLC濾波器設計流程 100 5.5 電流漣波消除技術的選擇 102 第六章 小訊號模型與補償設計 106 6.1 小訊號模型與回授補償要點 106 6.1.1 三端點開關模型 106 6.1.2 降壓型轉換器之小訊號模型 108 6.1.3 閉迴路系統對輸出阻抗影響 112 6.1.4 相位邊界與暫態響應的關係 115 6.2 降壓型轉換器搭配LCLC濾波器之小訊號模型與補償 120 6.2.1 降壓型轉換器搭配LCLC濾波器之小訊號模型 120 6.2.2 降壓型轉換器搭配LCLC濾波器之補償器設計 127 6.2.3 電壓與電流閉迴路模擬結果 139 第七章 結論與未來展望 150 7.1 結論 150 7.2 未來展望 151 參考文獻 153

    [1] Antonio Manenti, Andrea Abba, Alessandro Merati, Sergio M. Savaresi and Angelo Geraci, “A New BMS Architecture Based on Cell Redundancy,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4314-4322, 2011.
    [2] K. W. E. Cheng, B. P. Divakar, Hongjie Wu, Kai Ding and Ho Fai Ho, “Battery-Management System (BMS) and SOC Development for Electrical Vehicles,” IEEE Transactions on Vehicular Technology, vol. 60, no. 1, pp. 76-88, 2011.
    [3] Ahmed T. Elsayed, Christopher R. Lashway and Osama A. Mohammed, “Advanced Battery Management and Diagnostic System for Smart Grid Infrastructure,” IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 897-905, 2016.
    [4] 何昌祐,「SoC Introduction of Li-Ion Battery & Gauge」,Application Note- Richtek Technology,AN024,2014年9月。
    [5] 張偉倫-財團法人車輛研究測試中心,「電動車電池測試驗證國際標準介紹」,車輛研究資訊,2011年2月。
    [6] Luca Dalessandro, Fabiana da Silveira Cavalcante and Johann W.Kolar, “Self-Capacitance of High-Voltage Transformers,” IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 2081-2092, Sept. 2007.
    [7] M. Albach and J. Lauter, “The winding capacitance of solid and Litz wires,” in Proc. Eur. Power Electron. Conf., 1997, pp. 1–5.
    [8] J. Koch, “Berechnung der Kapazitat von Spulen, insbesondere in Schalenkernen,” Volvo Berichte, vol. 14, no. 3, pp. 99–119, 1968.
    [9] A. Massarini and M. K. Kazimierczuk, “Self-capacitance of inductors,”IEEE Trans. Power Electron., vol. 12, no. 4, pp. 671–676, Jul. 1997.
    [10] W. T. Duerdoth, “Equivalent capacitances of transformer windings,” Wireless Eng., vol. 23, pp. 161–167, Jun. 1946.
    [11] Juergen Biela and Johann W. Kolar, “Using Transformer Parasitics for Resonant Converters—A Review of the Calculation of the Stray Capacitance of Transformers,” IEEE Transactions on Industry Applications, vol. 44, no. 1, pp. 223-233, Jan/Feb. 2008.
    [12] R. K‥orger and R. Unbehauen, Elektrodynamik. Stuttgart, Germany: B.G. Teubner, 1995.
    [13] J. Koch, “Berechnung der kapazit‥at von spulen, insbesondere in schalenkernen,” Valvo Berichte, Band XIV, Heft 3, pp. 99–119, 1968.
    [14] Chi Kwan Lee, Y. P. Su and S. Y. Ron Hui, “Printed Spiral Winding Inductor With Wide Frequency Bandwidth,” IEEE Transactions on Power Electronics, vol. 26, no. 10, pp. 2936-2945, Oct. 2011.
    [15] Mohammad Ali Saket, Navid Shafiei and Martin Ordonez, “LLC Converters With Planar Transformers: Issues and Mitigation,” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4524-4542, June. 2017.
    [16] Prasanth Thummala, Henrik Schneider, Zhe Zhang and Michael A. E. Andersen, “Investigation of Transformer Winding Architectures for High-Voltage (2.5 kV) Capacitor Charging and Discharging Applications,” IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5786-5796, 2016.
    [17] Shushu Zhu, Xibo Yuan and Phil Mellor, “Reduction of parasitic capacitance of a power inductor through conductor placement,” in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 3215-3221.
    [18] T. C. Neugebauer and D. J. Perreault, “Parasitic capacitance cancellation in filter inductors,” IEEE Transactions on Power Electronics, vol. 21, no. 1, pp. 282-288, Jan. 2006.
    [19] M. Alizadeh B, H. Khomami P, and M. Rajabzadeh, "New design and implementation of an external passive circuit for cancelling the parasitic capacitance in filter inductors," 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India, 2010, pp. 1-4.
    [20] TDK Website:
    https://www.global.tdk.com/techmag/electronics_primer/index.htm
    [21] T.C. Neugebauer and D.J. Perreault, “Filters with inductance cancellation using printed circuit board transformers,” IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 591-602, 2004.
    [22] S. Wang, F. C. Lee, and W. G. Odendaal, “Cancellation of capacitor parasitic parameters for noise reduction application,” IEEE Transactions on Power Electronics, vol. 21, no. 4, pp. 1125–1132, Jul. 2006.
    [23] Junhong Zhang, Jih-Sheng Lai, Rae-Young Kim and Wensong Yu, “High-Power Density Design of a Soft-Switching High-Power Bidirectional dc–dc Converter,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1145-1153, 2007.
    [24] Christoph Marxgut, Florian Krismer, Dominik Bortis and Johann W. Kolar, “Ultraflat Interleaved Triangular Current Mode (TCM) Single-Phase PFC Rectifier,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 873-882, 2014.
    [25] Xiucheng Huang, Fred C. Lee, Qiang Li and Weijing Du, “High-Frequency High-Efficiency GaN-Based Interleaved CRM Bidirectional Buck/Boost Converter with Inverse Coupled Inductor,” IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4343-4352, 2016.
    [26] O. Abdel-Rahman, J. Liu, L. Yao, I. Batarseh, and H. Mao, “LCC zero voltage-switching buck converter with synchronous rectifier,” in Proc. IEEE IAS 2006, pp. 2150–2156.
    [27] Chien-Ming Wang, Ching-Hung Su, Maoh-Chin Jiang and Yan-Chun Lin, “A ZVS-PWM Single-Phase Inverter Using a Simple ZVS-PWM Commutation Cell,” IEEE Transactions on Industrial Electronics, vol. 55, no. 2, pp. 758-766, 2008.
    [28] Wensong Yu, Jih-Sheng Lai and Sung-Yeul Park, “An Improved Zero-Voltage Switching Inverter Using Two Coupled Magnetics in One Resonant Pole,” IEEE Transactions on Power Electronics, vol. 25, no. 4, pp. 952-961, 2010.
    [29] Jih-Sheng Lai, Wensong Yu and Sung-Yeul Park, “Variable Timing Control for Wide Current Range Zero-Voltage Soft-Switching Inverters,” in 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 2009, pp. 407-412.
    [30] Josh Wibben and Ramesh Harjani, “A High-Efficiency DC–DC Converter Using 2 nH Integrated Inductors,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 844-854, 2008.
    [32] Soumya Shubhra Nag, Santanu Mishra and Avinash Joshi, “A Passive Filter Building Block for Input or Output Current Ripple Cancellation in a Power Converter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 564-575, 2016.
    [33] Christophe BASSO - ON Semiconductor,“The Link Between The Phase Margin And The Converter Transient Response,”
    [34] Dragan Maksimovi?,“The relation between phase margin and closed-loop damping factor,”Fundamentals of Power Electronics, Chapter 9: Controller design.
    [35] R.B. Ridley, “Secondary LC filter analysis and design techniques for current-mode-controlled converters,” IEEE Transactions on Power Electronics, vol. 3, no. 4, pp. 499-507, 1988.
    [36] Marina S. Perdigão, M. F. Menke, Á. R. Seidel, Rafael Adaime Pinto and J. Marcos Alonso, “A Review on Variable Inductors and Variable Transformers: Applications to Lighting Drivers,” IEEE Transactions on Industry Applications, vol. 52, no. 1, pp. 531-547, 2016.
    [37] Mebrahtom Woldelibanos Beraki, João Pedro F. Trovão, Marina S. Perdigão and Maxime R. Dubois, “Variable Inductor Based Bidirectional DC–DC Converter for Electric Vehicles,” IEEE Transactions on Vehicular Technology, vol. 66, no. 10, pp. 8764-8772, 2017.
    [38] Rafael Adaime Pinto, J. Marcos Alonso, Marina S. Perdigão, Marcelo F. da Silva and Ricardo N. do Prado, “A New Technique to Equalize Branch Currents in Multiarray LED Lamps Based on Variable Inductors,” IEEE Transactions on Industry Applications, vol. 52, no. 1, pp. 521-530, 2016.
    [39] Jose M. Sosa, P. R. Martinez-Rodriguez, G. Escobar, G. Vazquez and J. C. Nava-Cruz, “Reduced output current ripple DC-DC buck converter control,” in IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 2497-2501.
    [40] Jose M. Sosa, Edgar D. Silva-Vera, Gerardo Vazquez, Gerardo Escobar and Panfilo R. Martinez-Rodriguez, “Experimental validation for an open-loop LCLC output filter buck converter,” in 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2017, pp. 1-6.

    QR CODE