簡易檢索 / 詳目顯示

研究生: 張家豪
Chia-Hao Chang
論文名稱: 金屬玻璃鍍層用於提升鎂合金疲勞性質、降低高速鋼鑽頭鑽孔溫度及降低風阻研究
Thin Film Metallic Glass Coating for Improvements of Fatigue Properties, Drill Bit Performance and Wind Drag Reductions
指導教授: 朱瑾
Jinn P. Chu
口試委員: 朱瑾
Jinn P. Chu
葉均蔚
Jien-Wei Yeh
陳明志
Ming-Jyh Chern
鄭憲清
Jason Shian-Ching Jang
薛承輝
Chun-Hway Hsueh
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 134
中文關鍵詞: 金屬玻璃鍍層四點抗彎疲勞保護性鍍層固態潤滑降低風阻表面摩擦
外文關鍵詞: thin film metallic glass, four-point bending fatigue, protective coating, solid lubricant, drag reduction, skin friction
相關次數: 點閱:300下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非晶金屬玻璃具有許多獨特的性質,如高機械強度、高彈性限、低摩擦係數和低表面能等,故適合作為保護性與功能性鍍膜以提升材料性能。本研究旨於探討金屬玻璃鍍層三種應用之各項試驗,欲提升ZK60鎂合金疲勞性質、M35高速鋼乾式鑽孔性能以及降低5052鋁合金板之風阻。
    在疲勞性質研究中,我們於ZK60鎂合金表面上鍍製厚度200 nm的金屬玻璃鍍層,並觀察其室溫下之四點抗彎疲勞行為,經107循環次數後發現,未鍍膜的鎂合金,疲勞強度為225 MPa,而鍍有鎢基 (W-TFMG)和鋯基(Z-TFMG)鍍層之鎂合金,疲勞強度則分別為270 MPa與280 MPa,整體強度提升高達24%。
    接著,我們針對M35高速鋼乾式鑽孔性能進行評估,於高速鋼表面上鍍製410 nm的金屬玻璃鍍層(鋯基、鈦基、鉬基、鎢基),結果發現,因製備之金屬玻璃鍍層附著能力不佳,導致鍍層對於降低鑽孔溫度並無顯著效益。
    最後,在風阻測試中,於風速34 m/s下,得到經由膜厚200 nm之金屬玻璃鍍層(鋯基、鋁基、鎳基、銅基)鍍覆5052鋁合金板材的總阻力可從原先69.83 g提升至79.42 g。在壓差條件一樣的情況下,表示鍍有金屬玻璃鍍層的試片具有較低的表面摩擦力,致使風阻減少幅度可達到14%。
    基於上述結果,高硬度與附著性佳的金屬玻璃鍍層可以減少表面缺陷、避免應力過度集中與阻擋疲勞裂縫擴展,達到保護性鍍層效果,提高疲勞性質。不僅如此,金屬玻璃鍍層低摩擦係數的特點,使其具備表面固態潤滑塗層之潛力,能減少鑽孔過程中Al切屑與鑽頭退屑槽間的摩擦力,讓鑽孔溫度不致劇烈增加。再者,金屬玻璃鍍層的低表面能性質與抗沾黏特性,可以減少殘留於物體表面之灰塵污垢,讓表面維持一定平整度,使得氣體分子於層流態流經物體時,轉換成紊流態的時間得以延緩,達到降低風阻的效果。


    Thin film metallic glasses (TFMGs) having amorphous structure have been reported to have excellent properties such as high mechanical strength, high elastic limit, low coefficient of friction, and low surface energy. By having these properties, TFMGs are very promising to be used as protective and functional coatings to improve certain substrate properties. In particular, the present study demonstrated the use of TFMG coatings in improving the fatigue properties of ZK60 Mg alloy and dry drilling performance of M35 high speed steel drill, and reducing the drag of 5052 Al alloy plate.
    For fatigue properties improvement investigation, we deposited a 200-nm-thick TFMG coating on the ZK60 magnesium (Mg) alloy to observe its fatigue behavior at room temperature by four-point bending fatigue test. We found out that the fatigue strength of Mg alloys coated with tungsten-based (W-TFMG) and zirconium-based (Z-TFMG) coatings were increased from 225 MPa to 270 MPa and 280 MPa, respectively, these values indicated that the TFMG coatings improved the fatigue resistance by as much as 24% through 107 cycles.
    Secondly, for the M35 high speed steel in dry drilling performance evaluation, we deposited 410-nm-thick TFMG coatings (Zr-, Ti-, Mo-, W-based) on M35 high speed steel drill bit. After coating, we found that to lower the drilling temperature one must consider the adhesion of TFMG coatings on the drill. It is based on our findings that due to the poor adhesion, the TFMG coatings could not help reducing the drilling temperatures.
    In addition, for the wind drag test, 200-nm-thick TFMG coatings (Zr-, Al-, Ni-, Cu-based) were deposited on 5052 Al plates. We found that, after coating, the total drag at the wind speed of 34 m/s was in between 73.14 g to 79.42 g, which indicated that TFMG-coated samples have lower skin friction and showed a drag reduction of 14% compared to uncoated ones when the same pressure drags were applied.
    Based on those preliminary results, it is believed that TFMG coatings are a promising protective coating to enhance the fatigue property by reducing the surface defects of the Mg alloy and retard fatigue crack propagation. Since TFMG coatings have the high hardness and good coating adhesion the excessive stress concentration on the substrate surface that result in early fatigue fracture.
    Besides, TFMG coatings are also potential as solid lubricant for their low coefficient of frictions, thereby reducing the friction between flute and chips of the drill during the dry drilling process. Moreover, TFMG coatings have a low surface energy, making TFMG coatings to exhibit a non-sticky characteristic, which can reduce the dirt adhesion on the surface and maintain the surface flatness to achieve the drag reduction, and it might delay the transition from the laminar flow state to the turbulent flow state, when the air particles pass through the surface of the object.

    摘要 I Abstract II Acknowledgment IV List of Figures IX List of Tables XV Chapter 1 Introduction 1 Chapter 2 Literature review 4 2.1 Metallic Glasses (MGs) 4 2.1.1 Glass Forming Ability of MGs 5 2.1.2 Supercooled Liquid Region (SCLR) 6 2.1.3 Deformation Mechanisms 7 2.1.4 Thin Film Metallic Glasses (TFMGs) 9 2.1.5 Potential Applications of TFMGs for Substrate Properties Enhancement 12 2.1.5.1 TFMGs for Improving Fatigue Properties of Metallic Substrates 12 2.1.5.2 TFMGs for Reducing Surface Friction 15 2.2 Magnetron Sputtering Depositions 16 2.2.1 Direct Current (DC) Sputtering 17 2.2.2 Radio Frequency (RF) 18 2.2.3 High-Power Impulse Magnetron Sputtering (HiPIMS) 19 2.3 Fatigue Properties of Magnesium (Mg) alloy 22 2.3.1 Various Types of Mg Alloys 22 2.3.2 Mg-Zn-Zr (ZK60) alloy 23 2.3.3 ZK60 Mg Alloy Fatigue Property Improvements 24 2.3.4 Fatigue Fracture Mechanism in Metallic Substrate 27 2.4 Dry Drilling Performance of Aluminum (Al) Alloy 32 2.4.1 7075 Al Alloy Workpiece 32 2.4.2 Cobalt M35 HSS Twist Drill Bit 33 2.4.3 Chip Formation and Heat Generation in Drilling Process 36 2.4.4 Hard and Wear Resistant Coatings for Cutting Tools 39 2.5 Drag Reduction in Wind Tunnel 42 2.5.1 Open Type Wind Tunnel 42 2.5.2 Reynolds Number: Definition and Equation 43 2.5.3 Boundary Layer in Wind Tunnel 44 2.5.4 Drag Force, Pressure Drag, and Skin Friction Drag 46 2.5.5 Drag Reduction Mechanism 47 2.6 Objectives of Study 47 Chapter 3 Experimental procedures 49 3.1 Sputtering Target Preparations 50 3.2 Substrate Preparations 50 3.2.1 ZK60 Mg Alloy 50 3.2.2 M35 HSS Twist Drill Bit and 7075 Al Alloy Workpiece 51 3.2.3 5052 Al plate substrate 52 3.3 TFMG Coating Depositions 52 3.3.1 TFMG Coatings on ZK60 Mg alloy 52 3.3.2 TFMG Coatings on M35 HSS drill 54 3.3.3 TFMG Coatings on 5052 Al plate 57 3.4 Four-Point Bending Fatigue Test 57 3.5 Dry Drilling Test and Hole Drilling Temperature Evaluation 58 3.6 Wind Tunnel Test 59 3.7 Material Characterizations 62 3.7.1 Crystallographic Analysis of TFMG coatings 62 3.7.2 Thermal Stability of TFMG Coatings 63 3.7.3 Surface Morphology Measurements 63 3.7.4 Nanoindentation Test 63 3.7.5 Microstructural and Chemical Composition Analyses 64 Chapter 4 Results and Discussion 65 4.1 TFMG Characterizations 65 4.1.1 Elemental Composition and Crystallographic Analyses 65 4.1.2 Thermal Stability Analysis 67 4.2 Fatigue Property Enhancements of ZK60 Mg Alloy by Zr-TFMG and W-TFMG Coatings 68 4.2.1 Stress versus Fatigue Life (S-N) Curves 68 4.2.2 Adhesion Evaluations 69 4.2.3 Surface Roughness 70 4.2.4 Microstructural Analysis of Fatigue Fracture Samples 72 4.2.5 Effects of TFMG Coatings on ZK60 Mg Alloy Fatigue Properties 75 4.3 Drilling Performance Evaluations of M35 HSS Twist Drill 76 4.3.1 Effects of TFMG Coatings on Drilling Temperature 76 4.3.2 Effects of TFMG Coatings on Surface Roughness and Morphology 86 4.3.3 Effects of TFMG Coatings on Coefficient of Friction (COF) 88 4.3.4 Effects of DC and HiPIMS Deposition on TFMG Coating Properties 89 4.4 Wind Tunnel Test Evaluations 95 4.4.1 Total Drag Measurements 95 4.4.2 Effects of Surface Roughness and Wettability on Wind Drag Force 98 Chapter 5 Conclusions 104 Chapter 6 Future Works 106 References 107

    [1] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin Solid Films, 520 (2012) 5097-5122.
    [2] W. Diyatmika, J.P. Chu, B.T. Kacha, C.-C. Yu, C.-M. Lee, Current Opinion in Solid State and Materials Science, 19 (2015) 95-106.
    [3] C.L. Chiang, J.P. Chu, F.X. Liu, P.K. Liaw, R.A. Buchanan, Applied Physics Letters, 88 (2006) 131902.
    [4] J.P. Chu, C.M. Lee, R.T. Huang, P.K. Liaw, Surface and Coatings Technology, 205 (2011) 4030-4034.
    [5] Y.Z. Chang, P.H. Tsai, J.B. Li, H.C. Lin, J.S.C. Jang, C. Li, G.J. Chen, Y.C. Chen, J.P. Chu, P.K. Liaw, Thin Solid Films, 544 (2013) 331-334.
    [6] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J.P. Chu, J.S.C. Jang, Y. Gao, P.K. Liaw, Thin Solid Films, 561 (2014) 2-27.
    [7] C.M. Lee, J.P. Chu, W.Z. Chang, J.W. Lee, J.S.C. Jang, P.K. Liaw, Thin Solid Films, 561 (2014) 33-37.
    [8] P.H. Tsai, J.B. Li, Y.Z. Chang, H.C. Lin, J.S.C. Jang, J.P. Chu, J.W. Lee, P.K. Liaw, Thin Solid Films, 561 (2014) 28-32.
    [9] A.H. Musfirah, J. Ghani, Magnesium and aluminum alloys in automotive industry, 2012.
    [10] D. Carou, E.M. Rubio, J.P. Davim, Machinability of Magnesium and Its Alloys: A Review, in: J.P. Davim (Ed.) Traditional Machining Processes: Research Advances, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 133-152.
    [11] P. C., K. K.U., Advanced Engineering Materials, 6 (2004) 281-289.
    [12] Z.B. Sajuri, Y. Miyashita, Y. Hosokai, Y. Mutoh, International Journal of Mechanical Sciences, 48 (2006) 198-209.
    [13] L.M. Wang, Q.M. Peng, J. Yang, D.Q. Fang, Y.M. Wu, H.F. Liu, J. Meng, H.J. Zhang, Materials Science Forum, 539-543 (2007) 1719-1722.
    [14] E.S. Puchi-Cabrera, F. Matı́nez, I. Herrera, J.A. Berrı́os, S. Dixit, D. Bhat, Surface and Coatings Technology, 182 (2004) 276-286.
    [15] U. Y., T. K., T. H., Fatigue & Fracture of Engineering Materials & Structures, 33 (2010) 607-616.
    [16] C.-C. Yu, J.P. Chu, C.-M. Lee, W. Diyatmika, M.H. Chang, J.-Y. Jeng, Y. Yokoyama, Materials Science and Engineering: A, 633 (2015) 69-75.
    [17] S.V. Madge, A. Caron, R. Gralla, G. Wilde, S.K. Mishra, Intermetallics, 47 (2014) 6-10.
    [18] J.P. Chu, C.-C. Yu, Y. Tanatsugu, M. Yasuzawa, Y.-L. Shen, Scientific Reports, 6 (2016) 31847.
    [19] M.-H. Tsai, J.-W. Yeh, Materials Research Letters, 2 (2014) 107-123.
    [20] C.-H. Lai, K.-H. Cheng, S.-J. Lin, J.-W. Yeh, Surface and Coatings Technology, 202 (2008) 3732-3738.
    [21] L. Chia-Han, L. Su-Jien, Y. Jien-Wei, D. Andrew, Journal of Physics D: Applied Physics, 39 (2006) 4628.
    [22] C.H. Lin, J.G. Duh, J.W. Yeh, Surface and Coatings Technology, 201 (2007) 6304-6308.
    [23] V. Braic, A. Vladescu, M. Balaceanu, C.R. Luculescu, M. Braic, Surface and Coatings Technology, 211 (2012) 117-121.
    [24] https://www.skybrary.aero/index.php/Surface_Coatings_and_Drag_Reduction.
    [25] W. Klement Jun, R.H. Willens, P.O.L. Duwez, Nature, 187 (1960) 869.
    [26] M. Telford, Materials Today, 7 (2004) 36-43.
    [27] D. Turnbull, M.H. Cohen, The Journal of Chemical Physics, 34 (1961) 120-125.
    [28] Z.P. Lu, C.T. Liu, Acta Materialia, 50 (2002) 3501-3512.
    [29] A. Inoue, Acta Materialia, 48 (2000) 279-306.
    [30] A. Peker, W.L. Johnson, Applied Physics Letters, 63 (1993) 2342-2344.
    [31] A.L. Greer, Nature, 366 (1993) 303.
    [32] R.W. Cahn, Materials science and technology, (1990).
    [33] F.R.S. William Hume-Rothery, Geoffrey Vincent Raynor, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 177 (1940) 27-37.
    [34] C. Suryanarayana, A. Inoue, Bulk metallic glasses, CRC press, 2017.
    [35] S. Hata, K. Sato, A. Shimokohbe, in: Asia Pacific Symposium on Microelectronics and MEMS, SPIE, 1999, pp. 12.
    [36] R.D. Conner, Y. Li, W.D. Nix, W.L. Johnson, Acta Materialia, 52 (2004) 2429-2434.
    [37] T.G. Nieh, J. Wadsworth, C.T. Liu, T. Ohkubo, Y. Hirotsu, Acta Materialia, 49 (2001) 2887-2896.
    [38] Y. Kawamura, A. Inoue, Applied Physics Letters, 77 (2000) 1114-1116.
    [39] A.S. Argon, Acta Metallurgica, 27 (1979) 47-58.
    [40] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, Acta Materialia, 49 (2001) 2645-2652.
    [41] B.A. Green, H.M. Meyer, R.S. Benson, Y. Yokoyama, P.K. Liaw, C.T. Liu, Corrosion Science, 50 (2008) 1825-1832.
    [42] M. Chen, Annual Review of Materials Research, 38 (2008) 445-469.
    [43] Y.C. Lo, H.S. Chou, Y.T. Cheng, J.C. Huang, J.R. Morris, P.K. Liaw, Intermetallics, 18 (2010) 954-960.
    [44] J.S.C. Jang, J.Y. Ciou, T.H. Li, J.C. Huang, T.G. Nieh, Intermetallics, 18 (2010) 451-458.
    [45] Y. Zhang, W.H. Wang, A.L. Greer, Nature Materials, 5 (2006) 857.
    [46] S. Qiu, K. Yao, P. Gong, Science China Physics, Mechanics and Astronomy, 53 (2010) 424-429.
    [47] J.P. Chu, J.E. Greene, J.S.C. Jang, J.C. Huang, Y.-L. Shen, P.K. Liaw, Y. Yokoyama, A. Inoue, T.G. Nieh, Acta Materialia, 60 (2012) 3226-3238.
    [48] C.-C. Yu, C.M. Lee, J.P. Chu, J.E. Greene, P.K. Liaw, APL Materials, 4 (2016) 116101.
    [49] Y.H. Liu, D. Wang, K. Nakajima, W. Zhang, A. Hirata, T. Nishi, A. Inoue, M.W. Chen, Physical Review Letters, 106 (2011) 125504.
    [50] H.S. Chou, J.C. Huang, L.W. Chang, Surface and Coatings Technology, 205 (2010) 587-590.
    [51] Y.H. Liu, T. Fujita, A. Hirata, S. Li, H.W. Liu, W. Zhang, A. Inoue, M.W. Chen, Intermetallics, 21 (2012) 105-114.
    [52] A.L. Greer, K.L. Rutherford, I.M. Hutchings, International Materials Reviews, 47 (2002) 87-112.
    [53] F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, P.K. Liaw, Surface and Coatings Technology, 203 (2009) 3480-3484.
    [54] L. Yongdong, H. Seiichi, W. Kouichi, S. Akira, Japanese Journal of Applied Physics, 40 (2001) 5382.
    [55] C.-H. Chang, C.-L. Li, C.-C. Yu, Y.-L. Chen, S. Chyntara, J.P. Chu, M.-J. Chen, S.-H. Chang, Surface and Coatings Technology, 344 (2018) 312-321.
    [56] C.-C. Yu, H.-j. Wu, P.-Y. Deng, M.T. Agne, G.J. Snyder, J.P. Chu, Scientific Reports, 7 (2017) 45177.
    [57] S. Baragetti, G.M. La Vecchia, A. Terranova, International Journal of Fatigue, 27 (2005) 1541-1550.
    [58] F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu, P.D. Rack, Materials Science and Engineering: A, 468-470 (2007) 246-252.
    [59] W. Kern, Thin film processes II, Academic press, 2012.
    [60] D. Depla, S. Mahieu, J.E. Greene, Chapter 5 - Sputter Deposition Processes A2 - Martin, Peter M, in: Handbook of Deposition Technologies for Films and Coatings (Third Edition), William Andrew Publishing, Boston, 2010, pp. 253-296.
    [61] http://www.semicore.com/news/94-what-is-dc-sputtering.
    [62] http://www.etafilm.com.tw/.
    [63] P.K. Rol, J.M. Fluit, J. Kistemaker, Physica, 26 (1960) 1000-1008.
    [64] K. Köhler, D.E. Horne, J.W. Coburn, Journal of Applied Physics, 58 (1985) 3350-3355.
    [65] H.R. Koenig, L.I. Maissel, IBM Journal of Research and Development, 14 (1970) 168-171.
    [66] K.K. Schuegraf, Handbook of thin-film deposition processes and techniques: principles, methods, equipment, and applications, Noyes Data Corporation/Noyes Publications, 1988.
    [67] V. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, I. Petrov, Surface and Coatings Technology, 122 (1999) 290-293.
    [68] U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Thin Solid Films, 513 (2006) 1-24.
    [69] S. Cuynet, in, Orléans, 2014.
    [70] J. Bohlmark, M. Lattemann, J.T. Gudmundsson, A.P. Ehiasarian, Y. Aranda Gonzalvo, N. Brenning, U. Helmersson, Thin Solid Films, 515 (2006) 1522-1526.
    [71] B.-S. Lou, Y.-C. Yang, Y.-X. Qiu, W. Diyatmika, J.-W. Lee, Surface and Coatings Technology, 350 (2018) 762-772.
    [72] M. Samuelsson, D. Lundin, J. Jensen, M.A. Raadu, J.T. Gudmundsson, U. Helmersson, Surface and Coatings Technology, 205 (2010) 591-596.
    [73] http://www.pvdtarget.com/info/hipims-2748187.html.
    [74] A.P. Ehiasarian, J.G. Wen, I. Petrov, Journal of Applied Physics, 101 (2007) 054301.
    [75] J. Alami, P.O.Å. Persson, D. Music, J.T. Gudmundsson, J. Bohlmark, U. Helmersson, Journal of Vacuum Science & Technology A, 23 (2005) 278-280.
    [76] A. Aijaz, D. Lundin, P. Larsson, U. Helmersson, Surface and Coatings Technology, 204 (2010) 2165-2169.
    [77] Y. Uematsu, K. Tokaji, M. Matsumoto, Materials Science and Engineering: A, 517 (2009) 138-145.
    [78] H. Westengen, H.M.M.A. Rashed, Magnesium Alloys: Properties and Applications, in: Reference Module in Materials Science and Materials Engineering, Elsevier, 2016.
    [79] B. ASTM, Annual Book of ASTM Standards. Philadelphia, Pennsylvania, USA: American Society for Testing and Materials, (1990).
    [80] X.-h. Chen, X.-w. Huang, F.-s. Pan, A.-t. Tang, J.-f. Wang, D.-f. Zhang, Transactions of Nonferrous Metals Society of China, 21 (2011) 754-760.
    [81] R. Zhu, W. Ji, Y. Wu, X. Cai, Y. Yu, Materials & Design, 41 (2012) 203-207.
    [82] W.C. Liu, J. Dong, P. Zhang, Z.Y. Yao, C.Q. Zhai, W.J. Ding, Journal of Materials Science, 44 (2009) 2916.
    [83] J. Dong, W. Liu, W. Ding, J. Zou, Journal of Metallurgy, 2011 (2011) 9.
    [84] M. Kuffova, Fatigue endurance of magnesium alloys, in: Magnesium Alloys-Design, Processing and Properties, InTech, 2011.
    [85] Y. Uematsu, T. Kakiuchi, T. Teratani, Y. Harada, K. Tokaji, Surface and Coatings Technology, 205 (2011) 2778-2784.
    [86] W. Soboyejo, Mechanical properties of engineered materials, CRC press, 2002.
    [87] K. Tokaji, S. Takafuji, K. Ohya, Y. Kato, K. Mori, Journal of Materials Science, 38 (2003) 1153-1159.
    [88] U. Krupp, Fatigue crack propagation in metals and alloys: microstructural aspects and modelling concepts, John Wiley & Sons, 2007.
    [89] R. Zeng, E. Han, W. Ke, International Journal of Fatigue, 36 (2012) 40-46.
    [90] A. Rivero, G. Aramendi, S. Herranz, L.N. López de Lacalle, The International Journal of Advanced Manufacturing Technology, 28 (2006) 1-11.
    [91] T. Dursun, C. Soutis, Materials & Design (1980-2015), 56 (2014) 862-871.
    [92] V. Songmene, R. Khettabi, I. Zaghbani, J. Kouam, A. Djebara, Machining and machinability of aluminum alloys, in: aluminium alloys, theory and applications, InTech, 2011.
    [93] H. Puneeth, B. Smitha, (2017).
    [94] V. Derflinger, H. Brändle, H. Zimmermann, Surface and Coatings Technology, 113 (1999) 286-292.
    [95] K. Tönshoff, A. Mohlfeld, T. Leyendecker, H.G. Fuß, G. Erkens, R. Wenke, T. Cselle, M. Schwenck, Surface and Coatings Technology, 94-95 (1997) 603-609.
    [96] R. Dubach, H. Curtins, H. Rechberger, Surface and Coatings Technology, 94-95 (1997) 622-626.
    [97] https://www.ruko.de/en/blog/eight-characteristics-of-a-twist-drill.
    [98] F. Ke, J. Ni, D.A. Stephenson, International Journal of Machine Tools and Manufacture, 45 (2005) 1652-1658.
    [99] T. Özel, T.-K. Hsu, E. Zeren, The International Journal of Advanced Manufacturing Technology, 25 (2005) 262-269.
    [100] S. Sun, M. Brandt, M.S. Dargusch, International Journal of Machine Tools and Manufacture, 49 (2009) 561-568.
    [101] B. Ozcelik, E. Bagci, Materials & Design, 27 (2006) 920-927.
    [102] M. Sato, T. Aoki, H. Tanaka, S. Takeda, International Journal of Machine Tools and Manufacture, 68 (2013) 40-47.
    [103] R.P. Zeilmann, W.L. Weingaertner, Journal of Materials Processing Technology, 179 (2006) 124-127.
    [104] Q. Shen, T.C. Lee, W.S. Lau, Journal of Materials Processing Technology, 66 (1997) 112-122.
    [105] M. Bono, J. Ni, Journal of Manufacturing Science and Engineering, 124 (2002) 921-923.
    [106] T. Ueda, R. Nozaki, A. Hosokawa, CIRP Annals, 56 (2007) 93-96.
    [107] H.C. Barshilia, K.S. Rajam, Bulletin of Materials Science, 30 (2007) 607-614.
    [108] D.G. Teer, Wear, 251 (2001) 1068-1074.
    [109] N. Wain, N.R. Thomas, S. Hickman, J. Wallbank, D.G. Teer, Surface and Coatings Technology, 200 (2005) 1885-1892.
    [110] W.H. Kao, Y.L. Su, S.H. Yao, Vacuum, 80 (2006) 604-614.
    [111] M.C. Kang, S.K. Je, K.H. Kim, B.S. Shin, D.H. Kwon, J.S. Kim, Surface and Coatings Technology, 202 (2008) 5629-5632.
    [112] http://acscoating.com/coating-specs/.
    [113] M.C. Santos, A.R. Machado, W.F. Sales, M.A.S. Barrozo, E.O. Ezugwu, The International Journal of Advanced Manufacturing Technology, 86 (2016) 3067-3080.
    [114] T. Brzezinka, J. Rao, M. Chowdhury, J. Kohlscheen, G. Fox Rabinovich, S. Veldhuis, J. Endrino, Coatings, 7 (2017) 149.
    [115] V.C. Venkatesh, W. Xue, Journal of Materials Processing Technology, 58 (1996) 379-384.
    [116] R. Dsouza, S. Salim, A. Shankar, M. Safwan, S. D 'sa, Wind Tunnels: State of Art Survey and Future Scope for Testing Micro Air Vehicles, 2016.
    [117] http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=ma7075t6, in.
    [118] http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=ma5052h32, (http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=ma5052h32).
    [119] W. Chen, X. Wang, L. Hu, E. Wang, Materials & Design, 40 (2012) 319-323.
    [120] X.F. Zhu, B. Zhang, J. Gao, G.P. Zhang, Scripta Materialia, 60 (2009) 178-181.
    [121] M.R. Stoudt, R. Cammarata, R.E. Ricker, Scripta materialia, 43 (2000) 491-496.
    [122] M. Nouari, G. List, F. Girot, D. Géhin, International Journal of Machine Tools and Manufacture, 45 (2005) 1436-1442.
    [123] G. Greczynski, J. Jensen, L. Hultman, IEEE Transactions on Plasma Science, 38 (2010) 3046-3056.
    [124] Y. He, M. Liang, M.S. Matthew, T.M. Jake, S.C. Tae, N.R. David, Plasma Sources Science and Technology, 22 (2013) 045012.
    [125] T.d.l. Arcos, V. Layes, Y.A. Gonzalvo, V.S.-v.d. Gathen, A. Hecimovic, J. Winter, Journal of Physics D: Applied Physics, 46 (2013) 335201.

    無法下載圖示 全文公開日期 2024/01/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE