簡易檢索 / 詳目顯示

研究生: 張智超
Zhi-Chao Zhang
論文名稱: 筆電裝置之行動通訊與無線網路天線設計
LTE and WLAN Antenna Designs for Notebooks
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 廖文照
Wen-Jiao Liao
馬自莊
Tzyh-Ghuang Ma
林丁丙
Ding-Bing Lin
朱輝南
Huy Nam Chu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 91
中文關鍵詞: 頻率可重置天線 頻率可重置天線行動裝置天線長期演進技術無線區域網路
外文關鍵詞: frequency reconfigurable antenna
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於無線通訊產業的興盛,各式行動裝置平台俯拾即是,在生活中也能隨時連上網際網路與世界無縫連接;消費者除了對無線傳輸效能要求更高,同時也希望通訊裝置外型美觀、機體輕盈,在種種需求之下,可將天線放與窄邊框筆電,或是配備有行動網路傳輸功能的高階筆電機構結合的設計,具有相當挑戰性。
    本論文第一部份提出一款置於二合一翻轉式觸控筆電轉軸內部且操作在無線區域網路頻段(Wireless LAN, WLAN)的雙頻天線設計。其架構採用雙端開槽孔。為了在有限空間創造出兩分明之共振模態,槽孔使用細線與高頻之尾端加大開口兩種技巧,使此天線可以達到包覆雙頻全頻段的需求。該設計不僅在筆電模式與平板模式下表現良好,亦為全平面設計,能夠降低製作成本,符合應用於二合一翻轉式觸控筆電轉軸內部的需求。
    第二個設計為置於筆電螢幕上方之頻率可重置天線,操作頻段為行動通訊的長期演進技術(Long Term Evolution, LTE)全頻段,此天線頻率可重置原理為在IFA天線末端加上金屬片,並以二極體切換方式改變天線尾端電容負載值,來達成頻率可重置之設計。論文中提出三款不同尺寸之天線,第一款是尺寸為66.5 mm × 15 mm × 0.8 mm之平面式天線,其優勢為0.8 mm的厚度;第二款為65 mm×7 mm×6 mm之立體式天線,其優勢為較小之長度與較小的寬度,並且包涵LTE全頻帶;第三款為70 mm×7 mm×3 mm的天線,其優勢為高度只有3 mm。經實做及量測驗證,每隻天線在效能表現與縮小化的部分各有其特色。


    Owing to the prosperity of the wireless communication industry, various mobile devices have been developed. Pervasive connection to the Internet at all-time has become a norm-throughput. In addition to the higher in wireless transmission, consumers also prefer sleek and light weight product. Increased connection requirements and configuration narrow border for high-end laptop models also make the design task more challenging.
    The first part proposes a dual-band WLAN antenna design that is placed inside the hinge area of a 2-in-1 convertible-type notebook. In order to create two resonant modes in a limited antenna space, the antenna uses two open-ended slots to cover WLAN 2.45/5 GHz bands. Two techniques including the use of a thin wire and a broadened slot opening are adopted. This design performs well in both notebook and tablet modes. It’s implemented on a single-sided printed circuit board, which can reduce the manufacturing cost.
    The second design is a frequency-reconfigurable antenna placed on the top edge of laptop screen. The operating bands comply with the long term evolution (LTE) needs for mobile communication. The principle feature of the reconfigurable antenna is adding metal patchs at the end of the IFA antenna. The diodes are connected to the patches and can be used to change the capacitive loading values. Three different antenna design of different sizes are proposed. The first one is a 66.5 mm × 15 mm × 0.8 mm planar thickness; the second design sizes are 65 mm × 7 mm × 6 mm, which has the advantages of a smaller length and a smaller width. It provides comprehensive LTE band coverage; the third one dimensions are 70 mm × 7 mm × 3 mm. The antenna height is reduced to merely 3 mm.

    摘要 x 目錄 xiii 圖目錄 xv 表目錄 xx 第一章 緒論 1 1.1 研究背景 1 1.2.論文組織 2 第二章 應用於筆電轉軸內部之WLAN雙頻天線設計3 2.1 前言 3 2.2 二合一翻轉式筆電中的天線環境 6 2.3 WLAN雙端開口槽孔之天線結構 10 2.4 平板模式天線特性 11 2.5 筆電模式天線特性 15 2.6 天線參數分析 20 2.7 實作天線於筆電轉軸內的量測結果 27 2.8 小結 35 第三章 應用於筆電之頻率可重置LTE天線設計 36 3.1前言 36 3.2 平面式頻率可重置天線設計 37 3.3 天線尾端負載電容對於頻率之影響 39 3.4 改變天線尾端電容負載的頻率重置方法 44 3.5 二極體偏壓電路設計與等效模型 48 3.6 平面式頻率可重置天線模擬結果 51 3.7 平面式頻率可重置天線實作與實測 54 3.8 立體式頻率可重置天線設計 59 3.9 低姿態立體式頻率可重置天線 73 3.10 LTE頻段頻率可重置天線特性比較 81 3.11 小結 82 第四章 結論 83 參考文獻 84 附錄I 88 附錄II 89

    [1] Institute of Electrical and Electronic Engineers 802 LAN/MAN Standards Committee, IEEE standard for information technology — Telecommunications and information exchange between systems — Local and metropolitan area networks-specific requirements, IEEE Std 802.11, 2007.
    [2] G. Bauch and A. Alexiou, “MIMO technologies for the wireless future,” in Proc. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications(PIMRC 2008), 2008.
    [3] H. Kim, Orthogonal Frequency‐Division Multiplexing, New York: Wiley Telecom, 2015.
    [4] S. Chang and W.-J. Liao, “A compact 3D antenna with comprehensive LTE band coverage for use on notebook hinge,” in Proc. IEEE Asia-Pacific Conference on Antennas and Propagation(APCAP), 2012.
    [5] L. Chen and K. Wong, “2.4/5.2/5.8 GHz WLAN antenna for the ultrabook computer with metal housing,” in Proc. Asia Pacific Microwave Conference (APMC). 2012.
    [6] S.-C. Chen, C.-W. Liou, C.-I G. Hsu and J.-Y. Sze, “An eight-band WWAN/LTE by-hinge printed inverted-F antenna on laptop computer,” in Proc. International Symposium on Antennas and Propagation (ISAP), 2018.
    [7] W.-X. Liu, Y.-Z. Yin, W.-L. Xu, and S.-L Zuo, “Compact open-slot antenna with bandwidth enhancement,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 850 - 853, Aug. 2011.
    [8] J.-S. Chen, “Studies of CPW-Fed equilateral triangular-ring slot antennas and triangular-ring slot coupled patch antennas,” IEEE Antennas Wireless Propag. Lett., vol. 53, pp. 2208 - 2211, Jul. 2005.
    [9] L. Dang, Z.-Y. Lei, Y.-J. Xie, G.-L. Ning, and J. Fan, “A compact microstrip slot triple-band antenna for WLAN/WiMAX applications,” IEEE Antennas Wireless Propag. Lett., vol. 9 pp. 1178 - 1181, Dec. 2010.
    [10] M.-C. Chang and W.-C. Weng, “A dual-band printed dipole slot antenna for 2.4/5.2 GHz WLAN applications,” in Proc. IEEE International Symposium on Antennas and Propagation (APSURSI), Aug. 2011.
    [11] R. Karimian, H. Oraizi, S. Fakhte, and M. Farahani “Novel F-shaped quad-band printed slot antenna for WLAN and WiMAX MIMO systems,” IEEE Antennas Wireless Propag. Lett, vol. 12, pp. 405-408, Mar. 2013.
    [12] N. Nguyen-Trong, L. T. Hall and C. Fumeaux, “Impedance matching of a frequency- and pattern-reconfigurable antenna,” in Proc. 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 2016.
    [13] T. Li, H. Zhai, X. Wang, L. Li, and C.-H. Liang, “Frequency-reconfigurable bow-tie antenna for bluetooth, WiMAX, and WLAN applications,” IEEE Antennas Wireless Propag. Lett.,vol.14, pp.171-174, Sep. 2014.
    [14] P.-Y. Qin, A. R. Weily, Y. J. Guo, and C.-H. Liang, “Polarization reconfigurable U-slot patch antenna,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3383-3388, Oct. 2010.
    [15] C.-T. Lee, S.-W. Su, Y.-W. Hsiao and F.-S. Chang, “Dual-wideband LTE/WWAN antenna for notebooks with plastic-clad metal cover,” in Proc. IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), 2016.
    [16] C.-L. Hu, D.-L. Huang, H.-L. Kuo, C.-F. Yang, C.-L. Liao, and S.-T. Lin, “Compact multibranch inverted-F antenna to be embedded in a laptop computer for LTE/WWAN/IMT-E applications,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 838–841, Aug. 2010.
    [17] N. Amani and A. Jafargholi “Internal uniplanar antenna for LTE/WWAN/GPS/GLONASS applications in tablet/laptop computers,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1654–1657, Mar. 2015.
    [18] S.-C. Chen, C.-S. Fu “Switchable Long-Term Evolution/ Wireless Wide Area Network/ Wireless Local Area Network Multiple-Input and Multiple-Output antenna system for laptop computers,” IEEE Access, vol. 5, pp. 9857–9865, May 2017.
    [19] A. Soliman, D. Elsheakh, E. Abdallah, and H. El-Hennawy “Multiband printed metamaterial inverted-F antenna (IFA) for USB applications” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 297-300, Sep. 2014.
    [20] D. M. Elsheakh and E. A. Abdallah, “Compact multiband multifolded-slot antenna loaded with printed-IFA,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp.1478-1481, Dec. 2012.
    [21] J. H. Kim, W. W. Cho, and W. S. Park, “A small dual-band inverted-F antenna with a twisted line,” IEEE Antennas and Wireless Propaga. Lett., vol. 8, pp. 307-310, Feb. 2009.
    [22] J. Sui, and K.-L. Wu “A capacitive loading method for turning a single band antenna into dual-band for wireless terminal applications,” IEEE Antennas and Wireless Propaga. Lett., vol. 17, pp. 2474-2478, Oct. 2018.
    [23] K.-L. Wong, and C.-Y. Tsai, “IFA-based metal-frame antenna without ground clearance for the LTE/WWAN operation in the metal-casing tablet computer” IEEE Trans. Antennas Propag., vol. 64, pp.53-60, Jan. 2016.
    [24] Murata, Design tools, [online] Available: https://www.murata.com/ [Accessed: Jun. 28, 2007].
    [25] Y.-L. Ban, S.-C. Sun, P.-P. Li, J. L.-W. Li, and K. Kang, “Compact eight-band frequency reconfigurable antenna for LTE/WWAN tablet computer applications,” IEEE Trans. on Antennas and Propaga., vol. 62, pp. 471-475, Oct. 2013.
    [26] M. Stanley, Y. Huang, H.-Y. Wang, H. Zhou, Z.-H Tian, and Q. Xu, “A novel reconfigurable metal rim integrated open slot antenna for octa-band smartphone applications,” IEEE Trans. on Antennas and Propaga., vol. 65, pp. 3352-3363, Jul. 2017.
    [27] Y. Xu, Y.-W. Liang and H.-M. Zhou, “Small-size reconfigurable antenna for WWAN/LTE/GNSS smartphone applications,” IET Microwaves, Antennas & Propaga., vol. 11, pp. 923-928, May. 2017.
    [28] S. W. Lee, H. S. Jung, and Y. J. Sung, “A reconfigurable antenna for LTE/WWAN mobile handset applications,” IEEE Antennas and Wireless Propaga. Lett., vol. 14, pp. 48-51, Sep. 2015.
    [29] Y.-L. Ban, Z.-X. Chen, Z. Chen, K. Kang, and J. L.-W. Li, “reconfigurable narrow-frame antenna for heptaband WWAN/LTE smartphone applications,” IEEE Antennas and Wireless Propag. Lett., vol. 13, pp. 1365-1368, Jul. 2014.
    [30] B. Mun, C. Jung, M.-J. Park, and B. Lee, “A compact frequency-reconfigurable multiband LTE MIMO antenna for laptop applications,” IEEE Antennas and Wireless Propag. Lett., vol. 13, pp. 1389-1392, Jul. 2014.

    QR CODE