簡易檢索 / 詳目顯示

研究生: 蒙杜巴雅
MENG TU PA YA
論文名稱: 工業設計創新趨勢-以汽車改裝套件設計專利為例
Industrial design trends: Using design patents of automotive body kits as an example
指導教授: 何秀青
Mei H.C. Ho
口試委員: 盧煜煬
管中徽
劉顯仲
何秀青
學位類別: 碩士
Master
系所名稱: 管理學院 - 科技管理研究所
Graduate Institute of Technology Management
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 120
中文關鍵詞: 工業設計改裝套件主路徑分析尾翼保險桿設計專利
外文關鍵詞: industrial design, body kits, main path, spoiler, bumper, design patent
相關次數: 點閱:291下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此製造業已臻成熟的基礎下,許多台灣廠商開始建立品牌,藉由設計創造優勢,引入工業設計師(Industrial designer)則是相對重要的一環,工業設計師扮演著在特定的條件限制下創新的角色,產生具有創意之產品造型設計(Form design),並建立競爭上的優勢。工業設計中,汽車改裝套件設計(Aerodynamics body kits)創新難度最高,需要高強度的產品意象造型能力與三維立體曲面建構觀念,在工業設計界被認定為造型創新難度相當高的產品。基於此,本研究以汽車改裝套件之設計專利為例,探討全球工業設計造型創新之演進,進一步討論各國在此領域的能耐與相對優勢。

    本研究以汽車改裝套件專業名詞中為關鍵詞,如保險桿(bumper)等進行專利檢索,透過全球專利資料庫WEBPAT擷取1978年到2016年共1866筆美國專利,並以此專利資料做主路徑分析及集群分析,探討整體專利之長期發展與設計知識網絡現況,再藉由造型風格分析矩陣的分析,提供實務上的市場切入建議。將專利的外部關係與內部內容做完整的統一,整合出完整的策略佈局分析。

    研究發現汽車改裝套件設計專利最早源自於1978年法商雷諾(Renault),1980年開始,日商(Toyota、Honda等)、美商(Ford、GM等)、德商(Daimler AG、BMW等)陸續投入設計專利申請,以及1984年改裝廠(Lorinser、Lund等)也開始進入。根據發展主路徑,造型趨勢從早期方正、簡約的形態,演化到現代多曲面、流線的形態,且汽車改裝套件設計專利並沒有領導設計主流的廠商,顯示各廠商創新能力相當。集群分析結果顯示,各廠商所著力的方向各有差異,不同群組中各有主流廠商,擾流板群組為例,德國保時捷(Porsche)為掌握該群組主要的廠商。本研究可提供新進入者在產業策略上的資料分析及策略佈局,並進一步自造型創新趨勢中,得知各國家及廠商在設計上的方向及長期優勢;藉了解工業設計創新能力,重新為企業的轉型定位。


    When facing challenges in the mature stage, some Taiwanese companies in manufacture industry start to use brand and design to find a new position. The change makes that the industrial design could be a significant step to gain advantages. Industrial designers play a role to create innovations under specific conditions with certain restrictions. They produce creative form design of products in order to gain advantages in competitions. Among the industrial design, the design of aerodynamics body kits is one of the most innovative categories and is always challenged. They require high strength of product image forming ability and three-dimensional constructional concept to show the innovation of product design. Therefore, this study uses aerodynamic body kits (ABK) as an example to discuss the development of innovation in industrial design worldwide, further investigate capabilities and relative advantages of different nations in this field.
    We use proper nouns of ABK to establish a keyword set to search relevant patent data, such as bumper. From WEBPAT, we collect 1,866 U.S. patents covering a period between 1978 and 2016. We then apply main path analysis to find out the long-term development of the designs in ABK. We also use edge-betweenness cluster analysis to identify the different branches in the whole knowledge network of ABK design. We also provide the suggestion on design strategic by using the Design Patent Map analysis. The present study integrates external relationships and internal contents of patents to come up with a complete strategic allocation analysis
    The results show that ABK design patents have started from a French corporation, Renault, since 1978. In the 1980s, the Japanese corporation (e.g. Toyota and Honda), American corporations (e.g. Ford and GM), and Germany corporations (e.g. Daimler AG and BMW) gradually started to apply for design patents. So did car modification shops such as Lorinser and Lund in 1984. According to the development of main path, the trend for forms went from square-shape and simple form to multi-curved and flow line form. Also, there is no corporation leading the main stream of the design of aerodynamic body kits which means that every corporation has the same level of innovative ability. The result of edge-betweenness analysis includes five clusters, i.e. Rear bumper、Front bumper、Sqare grill、Hexagonal grill and Spoiler. JP firms are more ambious on using ABK design patens to add values on their cars rather than the firms Europe or US. Some firms with unique position in the market, e.g. Porsche, also play a dominant role in the field of spoiler design. This study further applies patent data analysis to explore the potential markets for firms and new entrant innovators via patent map analysis. It also helps firm to understand how to utilize innovation to build up new positions.

    摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 X 壹、緒論 1 1.1研究背景 1 1.2個人化的社會與工業設計 1 1.3 工業設計與設計專利的密切關聯 1 1.4研究目的 2 1.5論文架構 2 貳、文獻探討 4 2.1 工業設計的定義 4 2.1.1 設計中美的形式原理 5 2.1.2 技術的進步與工業設計的關係 7 2.1.3 工業設計的在企業的價值 8 2.2設計知識資本的累積 8 2.3異領域的創新門檻及差異 10 2.3.1高難度的創新領域-交通工具 11 2.3.2汽車改裝套件的設計創新 12 2.4國家優勢 12 2.5設計策略管理 13 2.6設計知識的結晶 14 2.7章節統整 15 參、研究方法 16 3.1資料蒐集 16 3.2主路徑分析 17 3.2.1權重計算 19 3.2.2路徑追蹤 21 3.3 集群分析法 23 3.4 專利技術功效矩陣分析 23 3.5造型風格分析矩陣分析 24 3.6章節統整 25 肆、研究過程與結果 26 4.1敘述性統計 26 4.2汽車改裝套件專利成長曲線 27 4.3汽車改裝套件設計專利知識發展 28 4.4個性化造型設計元素 31 4.5專利權人引證網絡 32 4.6汽車改裝套件的主要設計類型 35 4.6分析結果統整 58 伍、造型風格分析矩陣 60 5.1造型元素 60 5.2五種設計風格 60 5.3造型風格分析矩陣 64 5.4汽車改裝套件造型風格分析矩陣分析 66 5.5影響風格動向的重要因素 88 5.6造型風格分析矩陣趨勢整理 88 陸、結論與建議 91 6.1 汽車改裝套件設計的整體發展動向 91 6.2 汽車改裝套件設計五大類型 92 6.3重要業者分析 94 6.3.1市場現況分析 98 6.3.2現有業者的面臨的問題 98 6.4整體策略佈局與切入方針 99 6.5實務應用與管理意涵 99 6.6研究限制與延伸 102 參考文獻 103

    Arnouts, D. (2012). Hooniverse explores BMW 5-series weight gain http://www.2040-parts.com/blog/Hooniverse-explores-BMW-5-series-weight-gain-13452/.
    Belingardi, G., Beyene, A. T., Koricho, E. G., & Martorana, B. (2015). Alternative lightweight materials and component manufacturing technologies for vehicle frontal bumper beam. Composite Structures, 120, 483-495. doi:10.1016/j.compstruct.2014.10.007
    Borja de Mozota, B., & Clipson, C. (1990). Design as a strategic management tool (pp. 73-84): Oxford: Blackwell.
    Brown, T., & Wyatt, J. (2010). Design thinking for social innovation IDEO. Development Outreach, 12(1), 29-31.
    Chen, R. (2009). Design patent map visualization display. Expert Systems with Applications, 36(10), 12362-12374.
    Fjell, C. D., Hiss, J. A., Hancock, R. E., & Schneider, G. (2012). Designing antimicrobial peptides: form follows function. Nature reviews Drug discovery, 11(1), 37-51.
    Gemser, G., & Leenders, M. A. (2001). How integrating industrial design in the product development process impacts on company performance. Journal of Product Innovation Management, 18(1), 28-38.
    Hummon, N. P., & Dereian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social networks, 11(1), 39-63.
    Kim, H. M., Rideout, D. G., Papalambros, P. Y., & Stein, J. L. (2003). Analytical target cascading in automotive vehicle design. Journal of Mechanical Design, 125(3), 481-489.
    Koenderink, J. J., & Van Doorn, A. J. (1992). Surface shape and curvature scales. Image and vision computing, 10(8), 557-564.
    Lee, H. W. (2015). Subculture of vehicle modification design-Mazda3. Asia University.
    Lee, S., Yoon, B., & Park, Y. (2009). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6), 481-497.
    Liu, J. S., & Lu, L. Y. (2012). An integrated approach for main path analysis: Development of the Hirsch index as an example. Journal of the American Society for Information Science and Technology, 63(3), 528-542.
    Lockwood, T. (2007). Design value: A framework for measurement. Design Management Review, 18(4), 90-97.
    Maskell, P., & Malmberg, A. (1999). Localised learning and industrial competitiveness. Cambridge journal of economics, 23(2), 167-185.
    Milton, P. R. A. (2012). 好設計打動人心,征服世界 (楊久穎, Trans.): 繆思出版.
    Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, 69(2), 026113.
    Otto, & Wood. (2003). Product design: techniques in reverse engineering and new product development: 清华大学出版社有限公司.
    Porter, M. E. (1980). Competitive strategy: Techniques for analyzing industries and competitors: Simon and Schuster.
    Thomas, R. J. (1993). New product development: Managing and forecasting for strategic success: University of Texas Press.
    Traverso, M. (2003). Car body design. Retrieved from http://www.carbodydesign.com/directory/design-schools/top-design
    Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in Complex Systems, 10(01), 93-115.
    Yan, Y., Li, S., Zhang, R., Lin, F., Wu, R., Lu, Q., . . . Wang, X. (2009). Rapid prototyping and manufacturing technology: principle, representative technics, applications, and development trends. Tsinghua Science & Technology, 14, 1-12.
    丁崇恩. (2011). 設計師品牌建立之價值鏈研究-以工業設計師為例. (碩士), 國立臺北科技大學, 台北市.
    孔斌. (2008). 基于空气动力学的车身造型设计. 武汉: 武汉理工大学.
    丘永福. (1993). 造形原理: 藝風堂.
    刘惟信. (2001). 汽车设计: 清华大学出版社有限公司.
    何风梅, & 赵灿. (2006). 快速原型制造技术在工业产品造型设计及制造中的应用. 机械设计与制造(11), 80-81.
    何明泉, 宋同正, 陳國祥, & 黃東明. (2009). 影響設計策略之要素分析研究. 設計學報 (Journal of Design), 2(1).
    周秋雲 (Writer). (2015). 以假當真妙用多 - 模型與工業設計. 大愛電視.
    封宏達. (2013). 整合CAD和傳統表現技能的創新汽車造型設計流程. (碩士), 國立臺北科技大學, 台北市.
    胡国强, 闵建苹, & 伍伟. (2011). 基于 Alias 的自由曲面汽车造型设计. 汽车工程师(5), 21-24.
    康文科, & 崔新. (2001). 浅谈设计管理对企业的重要性. 西北工业大学学报: 社会科学版, 21(1), 52-53.

    QR CODE