簡易檢索 / 詳目顯示

研究生: 廖睿宏
Liao-Jui Hung
論文名稱: 熱可逆聚氨酯自我修復材料之研究
The study of thermally reversible Polyurethane via Diels-Alder Reaction
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 芮祥鵬
賴秋君
邱顯堂
吳昌謀
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 聚氨酯熱可逆自我修復
外文關鍵詞: Diels-Alder, Polyurethane, Self-healing
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自我修復材料能透過外界的刺激來修復因機械損傷引起的裂紋,具有增加材料安全性、延長使用壽命及節省翻新成本等優點。聚氨酯 (Polyurethane, PU)為具有軟硬分子鏈的區段共聚物,物性多變從剛硬到柔軟並廣泛應用於日常生活中,熱可逆狄-阿 (Diels-Alder, DA)反應具有反應溫度適中及可逆回復率高的優點,導入DA可逆共價鍵於PU分子鏈中能具有優異的自我修復能力,藉由retro-DA斷鍵反應可使分子鏈變短以填補裂紋,經DA再鍵結反應可使分子鏈變長以回復機械性質,然而於修復材料裂紋期間為黏流態會使機械性質大幅下降,缺乏彈性使材料容易受外力產生形變。本實驗以含有熱可逆Diels-Alder鍵的線性PU分子鏈 (簡稱DAPU)作為修復劑,並以熱固性交聯PU (Crosslinked PU, CPU)作為骨架,兩者以重量比1:1進行物理混摻,藉由retro-DA斷鍵反應使DAPU分子鏈變短以提升流動性並填補裂紋,而熱固性CPU的網狀結構於斷鍵期間可維持材料彈性。由光學顯微鏡觀察可得,填補裂紋所需的溫度因CPU網狀結構會束縛線性DAPU分子熱運動而上升,而由拉伸測試可知,熱固性CPU為非可逆共價鍵組成,材料裂紋由線性DAPU分子鏈填補,其拉伸強度回復率與純DAPU相比由92.1 %下降至68.2 %,藉由動態熱機械分析可知線性DAPU與熱固性CPU混摻後,於裂紋修復期間能維持一定的彈性模數,可拓展自我修復材料之應用,如燃料儲藏囊、充氣膜結構以及建築外殼塗層等持續受力之材料。


    Self-healing materials can repair cracks caused by mechanical damage through external stimuli. and have the advantages of increasing material safety, extending service life and saving renovation costs. Polyurethane (PU) is a kind of copolymer with soft and hard segment. The physical properties can behave from rigid to soft and widely use in daily life. The advantage of Diels-Alder (DA) reaction is moderate reaction temperature and well reversibility. The introduction of DA reversible covalent bond in PU molecular chain can have excellent self-repairing ability. The retro-DA bond-breaking reaction can shorten the molecular chain to fill the crack. Then the DA re-bonding reaction can increase the molecular chain to restore the mechanical properties. However, during the crack healing the viscous flow state causes a significant drop in mechanical properties. The lack of elasticity makes the material susceptible to deformation by external forces. In this experiment, a linear PU molecular chain containing a thermally reversible Diels-Alder bond (DAPU) was used as a healing agent can healing the crack of bulk material. Moreover, a thermosetting crosslinked PU (CPU) was used as a backbone to enhance the elasticity during crack healing. Both component blend together with a weight ratio of 1:1. Observed by optical microscopy, the temperature required to fill the crack increases because the CPU network structure will constrain the thermal motion of the linear DAPU molecules. From the tensile test, the thermosetting CPU is composed of non-reversible covalent bonds, and the material crack is filled by linear DAPU. The tensile strength recovery rate decreased from 96.7 % to 68.2 % compared with pure DAPU. According to dynamic thermomechanical analysis, the blend of DAPU and CPU can let the material maintain a certain elastic modulus during the crack repairing. This kind of self-healing material can extend applications such as fuel storage bladders, inflatable structure membrane and architectural building envelopes.

    1. 前言....................................... 1 1.1. 自我修復材料 ............................. 1 1.1.1. 微膠囊型 ............................... 2 1.1.2. 微血管型 ............................... 3 1.1.3. 內修復型 ............................... 4 1.2. 內修復法機制 ............................. 4 1.2.1. 物理方法 ............................... 4 1.2.2. 裂紋間之分子擴散 ........................ 5 1.2.3. 形狀記憶促進自我修復 .................... 6 1.2.4. 化學方法 ............................... 6 1.2.5. 可逆回復鍵的自我修復機制 ................. 8 1.3. 研究動機 ................................. 15 1.3.1. 可逆鍵位置對自我修復的影響 ............... 15 1.3.2. 互穿網路結構材料 ......................... 17 1.4. 實驗目的 .................................. 20 2. 實驗..........................................21 2.1. 實驗原料 .................................. 21 2.1.1. 藥品除水 ................................ 22 2.2. 實驗流程圖 ................................ 22 2.3. 合成步驟及薄膜製備 ......................... 23 2.3.1. 線性熱可逆Diels-Alder 聚氨酯 (DAPU) ...... 23 2.3.2. 交聯聚氨酯 (CPU) ......................... 25 2.3.3. 交聯/線性Diels-Alder 聚氨酯 (C-DAPU)...... 26 2.3.4. 還原氧化鎢/聚氨酯 (W-DAPU) ................ 27 2.4. 樣品代號及配方 .............................. 30 2.5. 自我修復性質評估 ............................ 31 2.6. 實驗測試方法 ................................ 32 3. 結果與討論 .................................... 35 3.1. 合成及有機結構鑑定 ........................... 35 3.2. 示差掃描熱量分析儀 ........................... 38 3.3. 熱流變性質 .................................. 43 3.4. 裂紋修補觀察 ................................. 44 3.5. 修復效能測試 ................................. 48 3.6. 熱機械性質分析 ............................... 55 3.7. 形狀記憶測試 ................................. 60 3.8. 光熱轉換自我修復 .............................. 64 4. 結論............................................ 66 5. 參考文獻 ....................................... 68

    [1] A.A. Griffith, M. Eng, VI. The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. Lond. A 221(582-593) (1921) 163-198.
    [2] J.E. Pickett, M.M. Gardner, D.A. Gibson, S.T. Rice, Global weathering of aromatic engineering thermoplastics, Polymer Degradation and Stability 90(3) (2005) 405-417.
    [3] K.T. Tan, C.C. White, D.J. Benatti, D.L. Hunston, Evaluating aging of coatings and sealants: Mechanisms, Polymer Degradation and Stability 93(3) (2008) 648-656.
    [4] K. Tan, C. White, D. Benatti, D. Hunston, Effects of ultraviolet radiation, temperature and moisture on aging of coatings and sealants–A chemical and rheological study, Polymer Degradation and Stability 95(9) (2010) 1551-1556.
    [5] I.H. Kalfas, Principles of bone healing, Neurosurgical focus 10(4) (2001) 1-4.
    [6] B.J. Blaiszik, S.L. Kramer, S.C. Olugebefola, J.S. Moore, N.R. Sottos, S.R. White, Self-healing polymers and composites, Annual Review of Materials Research 40 (2010) 179-211.
    [7] B.C. Tee, C. Wang, R. Allen, Z. Bao, An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications, Nature nanotechnology 7(12) (2012) 825.
    [8] Y. Li, S. Chen, M. Wu, J. Sun, Polyelectrolyte multilayers impart healability to highly electrically conductive films, Advanced Materials 24(33) (2012) 4578-4582.
    [9] X.F. Wu, A. Rahman, Z. Zhou, D.D. Pelot, S. Sinha‐Ray, B. Chen, S. Payne, A.L. Yarin, Electrospinning core‐shell nanofibers for interfacial toughening and self‐healing of carbon‐fiber/epoxy composites, Journal of Applied Polymer Science 129(3) (2013) 1383-1393.
    [10] L. Zedler, M.D. Hager, U.S. Schubert, M.J. Harrington, M. Schmitt, J. Popp, B. Dietzek, Monitoring the chemistry of self-healing by vibrational spectroscopy–current state and perspectives, Materials Today 17(2) (2014) 57-69.
    [11] A.S. Rad, E. Binaeian, A. Mirabi, Automotive clear coat polyurethane (desmodur Z4470+ Different Desmophen) with respect to some physical and self-healing properties, Trends in Applied Sciences Research 7(5) (2012) 400-406.
    [12] W.H. Binder, Self-healing polymers: from principles to applications, John Wiley & Sons2013.
    [13] B. Blaiszik, N. Sottos, S. White, Nanocapsules for self-healing materials, Composites Science and Technology 68(3-4) (2008) 978-986.
    [14] E.N. Brown, M.R. Kessler, N.R. Sottos, S.R. White, In situ poly (urea-formaldehyde) microencapsulation of dicyclopentadiene, Journal of microencapsulation 20(6) (2003) 719-730.
    [15] A. Bal, G. Güçlü, T.B. İyim, S. Özgümüş, Effects of nanoparticles on film properties of waterborne acrylic emulsions, Polymer-Plastics Technology and Engineering 50(10) (2011) 990-995.
    [16] M.W. Keller, S.R. White, N.R. Sottos, A self‐healing poly (dimethyl siloxane) elastomer, Advanced Functional Materials 17(14) (2007) 2399-2404.
    [17] L. Yuan, G. Liang, J. Xie, L. Li, J. Guo, Preparation and characterization of poly (urea-formaldehyde) microcapsules filled with epoxy resins, polymer 47(15) (2006) 5338-5349.
    [18] S. Cosco, V. Ambrogi, P. Musto, C. Carfagna, Properties of poly (urea‐formaldheyde) microcapsules containing an epoxy resin, Journal of applied polymer science 105(3) (2007) 1400-1411.
    [19] Y.C. Yuan, M.Z. Rong, M.Q. Zhang, J. Chen, G.C. Yang, X.M. Li, Self-healing polymeric materials using epoxy/mercaptan as the healant, Macromolecules 41(14) (2008) 5197-5202.
    [20] Y.C. Yuan, M.Z. Rong, M.Q. Zhang, Preparation and characterization of microencapsulated polythiol, Polymer 49(10) (2008) 2531-2541.
    [21] X. Liu, X. Sheng, J.K. Lee, M.R. Kessler, Synthesis and characterization of melamine‐urea‐formaldehyde microcapsules containing ENB‐based self‐healing agents, Macromolecular Materials and Engineering 294(6‐7) (2009) 389-395.
    [22] S.H. Cho, H.M. Andersson, S.R. White, N.R. Sottos, P.V. Braun, Polydimethylsiloxane‐based self‐healing materials, Advanced Materials 18(8) (2006) 997-1000.
    [23] J.D. Rule, E.N. Brown, N.R. Sottos, S.R. White, J.S. Moore, Wax‐protected catalyst microspheres for efficient self‐healing materials, Advanced Materials 17(2) (2005) 205-208.
    [24] L. Zhang, Y. Tian, Y.M. Ma, The Analysis of Fracture Mechanics on Self-Healing Composite Materials with Microcapsules, Advanced Materials Research, Trans Tech Publ, 2012, pp. 1143-1146.
    [25] S.R. White, N. Sottos, P. Geubelle, J. Moore, M.R. Kessler, S. Sriram, E. Brown, S. Viswanathan, Autonomic healing of polymer composites, Nature 409(6822) (2001) 794.
    [26] S. Bleay, C. Loader, V. Hawyes, L. Humberstone, P. Curtis, A smart repair system for polymer matrix composites, Composites Part A: Applied Science and Manufacturing 32(12) (2001) 1767-1776.
    [27] J. Pang, I. Bond, ‘Bleeding composites’—damage detection and self-repair using a biomimetic approach, Composites Part A: Applied Science and Manufacturing 36(2) (2005) 183-188.
    [28] J.W. Pang, I.P. Bond, A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility, Composites Science and Technology 65(11-12) (2005) 1791-1799.
    [29] R. Trask, I. Bond, Biomimetic self-healing of advanced composite structures using hollow glass fibres, Smart Materials and Structures 15(3) (2006) 704.
    [30] G. Williams, R. Trask, I. Bond, A self-healing carbon fibre reinforced polymer for aerospace applications, Composites Part A: Applied Science and Manufacturing 38(6) (2007) 1525-1532.
    [31] R. Trask, G. Williams, I. Bond, Bioinspired self-healing of advanced composite structures using hollow glass fibres, Journal of the royal society Interface 4(13) (2007) 363-371.
    [32] H. Williams, R. Trask, I. Bond, Self-healing sandwich panels: restoration of compressive strength after impact, Composites Science and Technology 68(15-16) (2008) 3171-3177.
    [33] K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, S.R. White, Self-healing materials with microvascular networks, Nature materials 6(8) (2007) 581.
    [34] K. Toohey, N. Sottos, S. White, Characterization of microvascular-based self-healing coatings, Experimental Mechanics 49(5) (2009) 707-717.
    [35] T. Engel, Inorganic building blocks for the synthesis of self-healing nanocomposites based on Diels-Alder reaction, (2015).
    [36] D.Y. Wu, S. Meure, D. Solomon, Self-healing polymeric materials: a review of recent developments, Progress in Polymer Science 33(5) (2008) 479-522.
    [37] R. Wool, K. O’connor, A theory crack healing in polymers, Journal of Applied Physics 52(10) (1981) 5953-5963.
    [38] I.A. Rousseau, Challenges of shape memory polymers: A review of the progress toward overcoming SMP's limitations, Polymer Engineering & Science 48(11) (2008) 2075-2089.
    [39] A. Lendlein, S. Kelch, Shape‐memory polymers, Angewandte Chemie International Edition 41(12) (2002) 2034-2057.
    [40] A. Lendlein, A.M. Schmidt, M. Schroeter, R. Langer, Shape‐memory polymer networks from oligo (ϵ‐caprolactone) dimethacrylates, Journal of Polymer Science Part A: Polymer Chemistry 43(7) (2005) 1369-1381.
    [41] Y. Yang, X. Ding, M.W. Urban, Chemical and physical aspects of self-healing materials, Progress in Polymer Science 49-50 (2015) 34-59.
    [42] Y. Yang, M.W. Urban, Self-healing polymeric materials, Chem Soc Rev 42(17) (2013) 7446-67.
    [43] P. Du, X. Liu, Z. Zheng, X. Wang, T. Joncheray, Y. Zhang, Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels–Alder reaction, RSC Advances 3(35) (2013) 15475.
    [44] S.M. Kim, H. Jeon, S.H. Shin, S.A. Park, J. Jegal, S.Y. Hwang, D.X. Oh, J. Park, Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers, Adv Mater 30(1) (2018).
    [45] C.e. Yuan, M.Z. Rong, M.Q. Zhang, Self-healing polyurethane elastomer with thermally reversible alkoxyamines as crosslinkages, Polymer 55(7) (2014) 1782-1791.
    [46] J. Ling, M.Z. Rong, M.Q. Zhang, Photo-stimulated self-healing polyurethane containing dihydroxyl coumarin derivatives, Polymer 53(13) (2012) 2691-2698.
    [47] N. Bai, K. Saito, G.P. Simon, Synthesis of a diamine cross-linker containing Diels–Alder adducts to produce self-healing thermosetting epoxy polymer from a widely used epoxy monomer, Polymer Chemistry 4(3) (2013) 724-730.
    [48] Y.L. Liu, Y.W. Chen, Thermally reversible cross‐linked polyamides with high toughness and self‐repairing ability from maleimide‐and furan‐functionalized aromatic polyamides, Macromolecular Chemistry and Physics 208(2) (2007) 224-232.
    [49] C. Zeng, H. Seino, J. Ren, K. Hatanaka, N. Yoshie, Self-healing bio-based furan polymers cross-linked with various bis-maleimides, Polymer 54(20) (2013) 5351-5357.
    [50] H. Nandivada, X. Jiang, J. Lahann, Click chemistry: versatility and control in the hands of materials scientists, Advanced Materials 19(17) (2007) 2197-2208.
    [51] R. Kluger, Click chemistry for biotechnology and materials science, ACS Publications, 2010.
    [52] Y.L. Liu, C.Y. Hsieh, Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds, Journal of Polymer Science Part A: Polymer Chemistry 44(2) (2006) 905-913.
    [53] Y. Imai, H. Itoh, K. Naka, Y. Chujo, Thermally reversible IPN organic− inorganic polymer hybrids utilizing the Diels− Alder reaction, Macromolecules 33(12) (2000) 4343-4346.
    [54] J.R. Mcelhanon, E.M. Russick, D.R. Wheeler, D.A. Loy, J.H. Aubert, Removable foams based on an epoxy resin incorporating reversible Diels–Alder adducts, Journal of Applied Polymer Science 85(7) (2002) 1496-1502.
    [55] M. Nisizawa, Studies on irradiation of agar–agar in the solid state: On the changes of thermal property of agar–agar hydrogel produced by irradiation, Journal of applied polymer science 42(10) (1991) 2713-2716.
    [56] C. Goussé, A. Gandini, P. Hodge, Application of the Diels− Alder reaction to polymers bearing furan moieties. 2. Diels− Alder and Retro-Diels− Alder reactions involving furan rings in some styrene copolymers, Macromolecules 31(2) (1998) 314-321.
    [57] L. Feng, Z. Yu, Y. Bian, J. Lu, X. Shi, C. Chai, Self-healing behavior of polyurethanes based on dual actions of thermo-reversible Diels-Alder reaction and thermal movement of molecular chains, Polymer 124 (2017) 48-59.
    [58] P. Du, M. Wu, X. Liu, Z. Zheng, X. Wang, P. Sun, T. Joncheray, Y. Zhang, Synthesis of linear polyurethane bearing pendant furan and cross-linked healable polyurethane containing Diels–Alder bonds, New J. Chem. 38(2) (2014) 770-776.
    [59] X. Lu, G. Fei, H. Xia, Y. Zhao, Ultrasound healable shape memory dynamic polymers, J. Mater. Chem. A 2(38) (2014) 16051-16060.
    [60] E.D. Rodriguez, X. Luo, P.T. Mather, Linear/network poly(epsilon-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH), ACS Appl Mater Interfaces 3(2) (2011) 152-61.
    [61] M. AbdolahZadeh, A.C. C. Esteves, S. van der Zwaag, S.J. Garcia, Healable dual organic-inorganic crosslinked sol-gel based polymers: Crosslinking density and tetrasulfide content effect, Journal of Polymer Science Part A: Polymer Chemistry 52(14) (2014) 1953-1961.
    [62] C. Lakatos, K. Czifrák, J. Karger‐Kocsis, L. Daróczi, M. Zsuga, S. Kéki, Shape memory crosslinked polyurethanes containing thermoreversible Diels‐Alder couplings, Journal of Applied Polymer Science 133(43) (2016).
    [63] Y. Zhu, J.L. Hu, K.W. Yeung, Y.Q. Liu, H.M. Liem, Influence of ionic groups on the crystallization and melting behavior of segmented polyurethane ionomers, Journal of Applied Polymer Science 100(6) (2006) 4603-4613.

    無法下載圖示 全文公開日期 2023/11/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE