簡易檢索 / 詳目顯示

研究生: 劉信良
Sin-Liang LIOU
論文名稱: 複合式非破壞檢測於類岩斜剪過程之巨微觀破壞演化
Coupled Nondestructive Techniques to Study the Macro and Micro Fracture Behavior of Rock-like Material under Inclined Shear Tests
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 陳立憲
none
陳志南
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 117
中文關鍵詞: 初裂時機石膏斜向剪切試驗聲射技術電子斑紋干涉術
外文關鍵詞: electronic speckle pattern interferometry (ESPI), acoustic emission (AE), inclined shear test, gypsum, crack initiation.
相關次數: 點閱:382下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電子斑紋干涉術(Electronic Speckle Pattern Interferometry, ESPI)為主,輔以聲射技術(Acoustic Emission, AE),針對岩石最常發生之剪力破壞模式,進行一系列探討。為了搭配電子斑紋干涉術及聲射技術,建置一套斜向剪切試驗系統,以斜向剪切試驗模擬岩石受力行為,實驗中採用石膏及石膏砂漿作為人造類岩材料。
    本研究分成四大主軸:(a)斜向剪切儀之適用性(b)顆粒材料之膨脹角求算。(c)相同試體尺寸下其顆粒有無對於剪力破壞模式之差別性。(d)以電子斑紋干涉術量測石膏材料之初裂時機。
    由斜向剪切儀與傳統直接剪力儀之試驗結果比對得知,在正向應力約4 MPa以下,兩者所得之巨觀強度相當接近,驗證斜向剪切儀之適用性。
    經斜向剪切試驗結果可得知石膏砂漿試體之膨脹角約為11°,而當正向應力減少時,其破壞模式會由張力破壞趨近於剪力破壞,其結果與數值軟體分析頗為相似,而使用ESPI系統觀察到相同材料其初裂時機略為相同,石膏砂漿試體初裂時機約為加載百分比82∼86%之間,並結合AE系統可得知試體由內部微裂縫之發展趨勢。
    耦合電子班紋干涉術與聲射技術,可得知材料微觀裂縫之衍化,更能瞭解剪力破壞之機理,研究成果可供工程實務之佐參。


    This research investigated the mechanism of shear failure by performing a series of tests together with measurements of ESPI and AE. To couple the nondestructive technique of ESPI and AE, a set of inclined shear test equipment was designed and built. Gypsum and gypsum-sand mixture were used to prepare the specimens.
    Four major topics were investigated in this research: (1) the correctness and suitability of the inclined shear device, (2) the dilatancy angle of the specimen, (3) the influence of particle size on the shear failure mode, (4) the timing of crack initiation investigated by ESPI.
    By comparisons of the results of inclined shear tests with direct shear tests, it is shown that both tests give similar strength parameters under the condition of normal stress less than 4MPa. The correctness and suitability of the inclined shear device was approved.
    The dilatancy angle is about 11 degrees for specimen of gypsum-sand mixture. The failure mode evolved from tension to shear failure as the normal stress decreased. Similar behavior was also observed from the results of numerical analysis. The crack initiation, observed by ESPI, occurred at about the same loading level for same material. For gypsum-sand mixture, the crack initiation occurred at about 82~86% loading level. The development and evolution of microcracks of the specimens could be studied by AE technique.
    By coupling the nondestructive technique of ESPI and AE, the evolution of microcracks and the mechanism of shear failure could be studied more thoroughly, and the results could be referred to the construction practice.

    目 錄 論 文 摘 要I ABATRACTIII 誌 謝V 目 錄VII 表目錄X 圖目錄XI 符號對照表XV 第一章 緒 論1 1.1背景及動機1 1.2研究目的2 1.3研究方法與範圍3 1.4論文內容5 第二章 文獻回顧8 2.1 受剪行為之破壞模式8 2.1.1 Mohr破壞準則及Mohr-Coulomb破壞準則8 2.1.2 岩材力與變形關係9 2.1.3剪力試驗破壞型態10 2.2 顆粒力學之膨脹角定義11 2.3 線彈性破壞力學沿革與應用13 2.3.1 觀念緣起13 2.3.2 理論發展14 2.4 線彈性破壞力學理論15 2.4.1 Griffith能量平衡理論15 2.4.2 應力強度因子與破壞韌度17 2.5 非破壞光學檢測-電子斑紋干涉術沿革與應用18 2.5.1 光測力學基本理論18 2.5.2 電子斑紋干涉術19 2.6 非破壞檢測-聲射技術之原理與應用21 第三章 試驗規劃與執行29 3.1 試驗流程30 3.1.1 小型加載系統之斜向剪切試驗流程30 3.1.2 MTS系統之斜向剪切試驗流程32 3.2 試驗材料32 3.3 破壞性試驗之建置35 3.4 電子斑紋干涉術系統建置36 3.4.1 斑點效應特性37 3.4.2 面內位移系統37 3.4.3 電子斑紋干涉系統儀器之架設40 3.5 聲射技術系統建置42 3.5.1 聲射技術基本原理43 3.5.2 聲射定位準則44 第四章 試驗結果與分析72 4.1 試驗參數說明72 4.2 斜向剪切儀之適用性驗證75 4.2.1 試驗結果分析75 4.3 剪切角度與內部幾何對巨觀破壞行為之影響76 4.3.1不同剪切角度於類岩材料之破壞形態比對77 4.3.2 不同剪切角度於類岩材料之加載歷程79 4.3.3 斜向剪切試驗之膨脹角求算82 4.4 剪切角度與內部幾何對微觀裂隙之衍化影響82 4.4.1 不同剪切角度與材料之空間演化82 4.4.2 石膏砂漿試體微觀行為之時間衍化85 4.5 複合式非破壞檢測耦合比對85 4.6 實驗解與數值解比對86 第五章 結論與建議111 5.1 結論111 5.1.1 斜向剪切儀適用性111 5.1.2 斜剪過程之巨觀行為112 5.1.3 斜剪過程之微觀演化112 5.1.4 非破壞檢測ESPI與AE之耦合比對113 5.1.5 實驗解與數值解之比對113 5.2 建議113 5.2.1 試驗材料之建議113 5.2.2破壞試驗之建議114 5.2.3 非破壞檢測之建議114 參考文獻116

    參考文獻
    1. 李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,
    碩士論文,國立台北科技大學土木與防災研究所,台北(2006)。
    2. 林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程所,台北(2006)。
    3. 洪啟德,「岩石之模擬材料與其直接剪力破壞模式之研究」,碩士論文,國立台
    灣科技大學營建工程所,台北(1989)。
    4. 胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀貫切之破壞機制」,碩
    士論文,國立台北科技大學土木工程所,台北(2007)。
    5. 曾垂拱,私人文稿,台北(2007)。
    6. 劉峵偉,「以非破壞耦合試驗岩探類岩材料受楔形灌切破壞之側向自由邊界效
    應」,碩士論文,國立台灣科技大學營建工程所,台北(2007)。
    7. 應傳智,「人工軟弱岩石之研究」,博士論文,國立台灣大學土木工程所,
    台北(1995)。
    8. 魏德禎,「岩石斜向剪切試驗暨其聲光非破壞檢測之佐驗」,碩士論文,國立台灣科技大學營建工程所,台北(2008)。
    9. Bray, D. E., and McBride, D., Acoustic Emission Technology, Nondestructive
    Testing Techniques, New York, pp. 345-377 (1992).
    10. Biolzi, L., Pedala, S. and Labuz, J. F., “Mechanical characterization of natural building stone,” Degradation of Natural Building Stone, Geotechnical Special Publication , ASCE, No.72, pp.33-41 (1999).
    11. Butters, J. N. and Leendertz, J. A., “Holographic and video techniques applied to engineering mesurements,” Transactions of the Institute of Measurement and Control, Vol. 4, pp. 349-354 (1971).
    12. Chen, L.H., “Failure of rock under normal wedge indentation,” Ph. D. Thesis, University of Minnesota, Minnesota, U.S.A (2002).
    13. Coulomb, C.A., “Sur une application des regles, de maximis et minimis a quelques problemes de statique, relatifs a larchitecture” Paris, L’Imperial Royale, Me´moires de Mathe matique et de Physique, pp. 343–384 (1776).
    14. Everling, G.,”Comment upon the definition of shear strength,“. International Journal of Rock Mechanics and Mining Sciences, Vol. 1, pp.145-154 (1964).
    15. Fowler, T. J., “acoustic emission of fiber reinforced plastics,” Journal of the
    Technical Councils of ASCE, Proceedings of the ASCE, Vol. 105, No 2, pp. 281-289
    (1979).
    16. Griffith, A. A., “The phenomena of rupture and flow in solids,” Philosophical Transactions of the Royal Society, Vol. 221, pp.163-197 (1921).
    17. Gabor, D., “A new microscopic principle,” Nature, Vol.161, pp.777-778 (1948).
    18. Holcomb, D. J. and Costin, L. S., “Detecting Damage Surface in Brittle
    Materials Using Acoustic Emission,” Journal of Applied Mechanics, Vol. 53, pp.
    536-544 (1986).
    19. Irwin, G. R., “Analysis of stresses and strain near the end of a crack,” Journal of Applied Mechanics, Vol. 24, pp. 361-364 (1948).
    20. Kaiser, J., “Undersuchungen uber das aufrterten geraucchen beim
    zevgersuch,” Ph. D Thesis. Technische Hochschule, Munich, German (1953).
    21. Lajtai, E.Z., ”Mechanics of second order faults and tension gashes ,” The Geological
    Society of America. Vol. 80, pp. 2253-2272 (1969).
    22. Leith, E. N., and Upatnieks, J., “Reconstructed wavefronts and communication
    theory,” Journal of the Optical Society of America. Vol. 52, pp. 1123-1130 (1962).
    23. Maji, A. K., “Acoustic emissions from reinforced concrete” Experimental
    Mechanics,Vol. 34, No. 4, pp. 379-388 (1994).
    24. Maji, A. K., Wang., J. L, and Lovato, J., “ Electronic speckle pattern
    interferometry for fracture mechanics testing,” Experimental Techniques,
    Vol.15, No. 3, pp.19-23 (1991).
    25. Mohr, O., “ Welche umstande bedingen die elastizitatsgrenze und den bruch
    eines materiales,” Zeitschrift des Vereines Deutscher Ingenieure, Vol. 44, pp.
    1524-1530 (1900).
    26. Moore, A. J. and Tyrer, J. R., “ An electronic speckle pattern interferometry
    for complete in-plane displacement measurement,” Measurement Science and
    Technology, Vol. 1, pp. 1024-1030 (1982).

    27. Ohtsu, M.,” Acoustic emission characteristics of concrete and fundamental
    mechanisms.” Ph. D. Thesis, Kyoto University, Japan (1982).
    28. Resenblad, J. L.,” Development of a rocklike material”. Proceedings of the
    10th Symposium on Rock Mechanics. pp. 331-361 (1968).
    29. Rowe, P. W., Barden, I., and Lee, I. K., ” Energy components during the
    triaxial cell and direct shear test,” Geotechnique, Vol. 14, pp. 247-261 (1964).
    30. Stimpson, B.,” Modeling for engineering rock mechanics,” International Journal
    of Rock Mechanics and Mining Science. Vol. 7, pp. 77-121 (1970).
    31. Yang, Z. Y., “ Qualitative study on the regularly stick-slip shear behavior of
    ellipitical particles,” Tamkang Journal of Science and Engineering, Vol 1, No. 1, pp.
    14-19 (1998).

    QR CODE