簡易檢索 / 詳目顯示

研究生: 劉峵瑋
Hung-Wei Liu
論文名稱: 以非破壞耦合試驗研探類岩材料受楔型貫切破壞之側向自由邊界效應
The Effect of Lateral Stress-Free Boundary on Rock-Like Material under Wedge Indentation Fracture by Coupled Nondestructive Techniques
指導教授: 陳堯中
Yao-Chung Chen
陳立憲
Li-Hsien Chen
口試委員: 陳志南
Chee-Nan Chen
游步上
Bu-Shang You
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 170
中文關鍵詞: 貫切試驗側向自由邊界聲射電子點紋裂衍偏斜比
外文關鍵詞: indentation, lateral stress-free boundary, acoustic emission (AE), electronic speckle pattern interferometry (ESPI), crack path ratio (b/h)
相關次數: 點閱:207下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機械式鑽掘機於山岳隧道之開挖,可提升工程安全性及營建自動化之成效,惟因鑽掘切削之機制尚有不明處,因此產生切削刀頭之不當耗損,導致機械開挖之不彰;又台灣地質破碎;地下工程遭遇斷層、節理等弱面之機會大增,故本研究藉由將多刀楔掘削開挖斷面簡化為單一刀楔之正向貫切模擬,均質類岩(水泥砂漿)受無圍壓的側向自由邊界方式模擬側向開口不連續之弱面狀況進行探討,藉以瞭解相關貫切破壞機理,冀作增進其開挖效能之參考。試驗能建構二維貫切儀器架設作為探討課題,藉由改變:(1) 側向自由邊界距離貫切點之位置;(2)單一楔形刀角(wedge angle)等變數;於無側壓(stress free)狀況下,實驗排程採開裂變位(COD)控制以求得完整加載歷程,探討貫切所造成之破壞演化。本研究並結合非破壞之聲射(acoustic emission, AE)技術觀察微震裂源(microseismic locations),並輔以電子點紋干涉術(ESPI)對照其微巨觀之脆性破壞特徵。
    從貫切破壞過程的峰前行為得知,相同之楔形刀角之下於不同側向自由邊界位置之條件下,其標稱貫切壓力受側向自由邊界效應之影響極微,惟最大貫切力 及其對應之貫切深度d會隨著接近側向自由邊界位置之距離降低而減少。反之不同刀楔角度之下於相同側向邊界條件下時,標稱貫切壓力隨著刀角變大而降低。
    由加載歷程之峰後的裂衍路徑觀之,本研究所定義之裂衍偏斜比(bi/hi)約趨於定值1/4,亦即裂衍路徑具形狀幾何自相似之特徵。但其初裂方位不受側向自由邊界之影響,均為垂直初裂,另由聲射技術之監測微震裂源和巨觀裂衍趨勢相符。故據以探求不同側向自由邊界之貫切過程中,峰前塑性區的延性破壞與後續於塑性邊界產生之脆性裂衍演化。
    再從耦合聲光之非破壞檢測之互相比對得知,愈接近側向自由邊界之臨界彈塑性界面有縮小趨勢,從聲學之微震裂源定位,與光學觀察主要裂縫發展頗為一致。


    Proper mechanical tunnel excavation in rock mass is capable to improve underground safety and automatic efficiency under construction. However, the complexity of contact mechanism during boring process raises with different geological conditions such as opening weak plane. To understand this difficult contact interaction, this study presents a cutting simulation by simplifying real excavation as a single, normal indentation on synthetic rock with varying wedge angle of cutter as well as lateral stress-free boundary. By changing the distance from indentation position to lateral stress-free boundary, the effect of opening weak plane on the damage evolution including the growth of plastic zone (ductile failure) and tensile crack propagation (brittle fracture) was monitored. The experimental results were conducted through a 2-D setup of indentation apparatus in laboratory. Using COD (crack opening displacement) as a feedback signal of closed-loop control system, the completely stable loading curve can be approached such that the crack path under indentation can be examined. Meanwhile, in conjunction of a nondestructive technique of Acoustic Emission (AE), the observation between both the visible-crack pattern and micro-crack development, which represented by micro-seismic activities of AE, reveals the characteristics of indentation fracture consistently. Furthermore, to monitor the effect of lateral free boundary on the crack propagation, crack path ratio (b/h) were proposed to measure. Experimental results show that the values of bi/hi keep invariant. In other words, the existence of geometrical similarity of b/h (1/4) was found during indentation. Additionally, the orientation of initial tensile crack is not affected by lateral stress-free boundary.
    Furthermore, by comparing both results from coupled nondestructive techniques of AE and ESPI(electronic speckle pattern interferometry), it is found that the less the ratio of lateral distance(2b/W),the smaller the elasto-plastic interface. Regarding the brittle fracture, micro seismic locations obtained from AE and observed main crack from ESPI evolve a promising consistency.

    論 文 摘 要 I ABSTRACT III 致 謝 V 目 錄 VI 表目錄 VIII 圖目錄 IX 符號對照表 XII 第一章、緒 論 1 1.1背景與動機 1 1.2研究目的 2 1.3範圍與方法 3 1.4 論文內容 5 第二章、文獻回顧 8 2.1 接觸破壞模擬—貫切試驗之沿革 8 2.2 貫切試驗之延性理論-孔洞擴展模式 11 (CAVITY EXPANSION MODEL, CEM) 11 2.3 破壞力學之相關理論-線彈性破壞力學 16 2.3.1 破壞力學之發展 16 2.3.2破壞模式 17 2.3.3 裂紋前端之塑性區 19 2.4 非破壞檢測—聲射技術之發展 21 2.4.1 聲射定位原理 22 2.4.2 聲射定位準則 25 2.5 非破壞檢測—電子點紋干涉術之沿革 27 第三章、試驗架構與執行 39 3.1 試驗材料 41 3.2 試驗設備 43 3.2.1 破壞試驗部份:平面問題之貫切試驗 43 3.2.2 非破壞聲射(AE)儀器架設 44 3.2.3 非破壞電子點紋干涉技術(ESPI)儀器架設 47 3.3 方法與流程 49 3.3.1校正檢驗 49 3.3.2 不同側向自由邊界之貫切破壞試驗 53 3.4 試驗參數說明 59 第四章、試驗結果與分析 79 4.1 側向自由邊界與刀楔角度對巨觀破壞行為之影響 82 4.1.1 側向自由邊界對加載歷程峰前標稱貫切壓力之影響 82 4.1.2 側向自由邊界對加載歷程峰前最大貫切力之影響 83 4.1.3 刀楔角度對加載歷程之峰前標稱貫切壓力影響 84 4.1.4 刀楔角度對加載歷程最大貫切力之影響 85 4.1.5 側向自由邊界貫切之於位置之裂衍特徵 87 4.2 側向自由邊界效應與刀楔角度對微觀破壞行為之影響 90 4.2.1 側向自由邊界對微震裂源與加載歷程之關係 90 4.2.2 刀楔角度對微震裂源與加載歷程之關係 93 4.2.3 側向自由邊界效應對彈-塑性界面發展之影響 94 4.2.4 刀楔角度對彈-塑性界面發展之影響 96 4.2.5 聲射位源之分佈帶寬反應材料之特徵長度 96 4.3 非破壞耦合檢測之成果展示 98 4.3.1彈-塑性界面之比對 98 4.3.2裂縫尖端微小塑性區之探討 100 4.4 試驗值與解析解之驗證 101 第五章、結論與建議 127 5.1 結 論 127 5.2 建議 130 參考文獻 133 附 錄 137

    1.吳建宏、張健峰,「黑色片岩異向性與室內預應力之研究」,地下開挖與防災之創新科技研究成果發表研討會論文集,2007年。
    2.胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀之破壞機制」,國立台北科技大學土木工程系碩士論文,台北,2007年。
    3.李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,國立台北科技大學土木工程系碩士論文,台北,2007年。
    4.楊琳琰,「岩石於正向貫切破壞試驗之數值模擬-以單一楔形刄口為例」,國立台北科技大學土木工程系碩士論文,台北,2007年。
    5.林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,國立台灣科技大學營建工程系碩士論文,台北,2006年。
    6.蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,國立台灣科技大學營建工程系碩士論文,台北,2005年。
    7.陳家豪,「巴西試驗之音射定位分析研究」,岩盤工程研討會論文集,2004年。
    8.李佳龍,「音洩定位法於岩石材料之應用」,國立成功大學資源工程學系碩士論文,2003年。
    9.黃兆龍,「混凝土性質與行為-第三版」,詹氏書局,台北,2002年
    10.林建志,「水泥砂漿材料強度參數c、φ值之研究」,國立台北科技大學土木與防災研究所碩士論文,2002年。
    11.小林英男,「破壞力學」,龍璟文化,台北,2002年
    12.宋煥文,「三點彎曲作用下岩石破裂機制之研究」,國立台灣科技大學營
    建工程技術研究所碩士論文,台北,1994年。
    13.廖志信,「岩石材料中音射發生源之位置探測研究」,國立成功大學土木工程系碩士論文,1993年。
    14.Almenara, R. and Detournay E. (1992). "Cutting Experiments in Sandstones with Blunt PDC Cutters." In Proc. EuRock, v 92, p 215-220. Thomas Telford, London.
    15.Berthelot, J. M. (1993). "Frequency Analysis of Acoustic Emission Signals in Concrete." Journal of Acoustic Emission, v 11, n 1, p 11-18.
    16.Boussinesq, J. (1885). Applications of Potentials for the Study of Equilibrium and Movement of Elastic Solids (in French). Paris: Gautier-Villars.
    17.Bray, D. E. and McBride. (1992). "Acoustic Emission Technology." Nondestructive Testing Techniques, p 345-377, John Wiley & Sons Inc.
    18.Butters, J. N. and Leendertz, J. A. (1971). "Holographic and Video Techniques Applied to Engineering Measurements." Trans. Inst. Meas. Control, v 4, p 349-354.
    19.Chen, L. H. (2002) "Failure of Rock under Normal Wedge Indentation.", Ph. D. Thesis, University of Minnesota.
    20.Chen, L. H. (2006) "Indentation of Rock Failure by Wedge-Shaped Tools.", International Journal of Rock Mechanics and Mining Sciences. v 43, p1023-1033.
    21.Damjanac, B., and Detournay, E. (1995). "Numerical Modelling of Normal Wedge Indentation in Rocks."personal communication.
    22.Detournay, E., Fairhurst, C. and Labuz, J. F. (1995). "A Model of Tensile Failure Initiation under an Indentor." In P. Rossmanith (Ed.), Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rock (MJFR-S), Vienna, Austria.
    23.Drescher, A. and Kang Y. (1987). "Kinematic Approach to Limit Load for Steady Penetration in Rigid-plastic Soils." Geotechnique, v 37, n 3, p 233-246.
    24.Fowler, T. J. (1979). "Acoustic Emission of Fiber Reinforced Plastics." Journal of the Technical Councils of ASCE: Proceedings of the ASCE, v 105, n 2, p 281-289.
    25.Griffith, A. A. (1921). "The Phenomena of Rupture and Flow in Solids." Phil. Trans. Ray. Soc., London A221, p 163-197.
    26.Hertz, H. H. (1896). Hertz's Miscellaneous papers. London: Macmillan.
    27.Holcomb, D. J. and Costin L. S. (1986). "Detecting Damage Surface in Brittle Materials Using Acoustic Emission." ASME J. Appl. Mech. v 53, p 536-544.
    28.Huang, H., Damjanac, B., and Detournay E. (1998). "Normal Wedge Indentation in Rocks with Lateral Confinement." Rock Mechanics and Rock Engineering, v 31, n 2, p 81-94.
    29.James, D. L. (1989). "Acoustic Emission Investigation into Some Concrete Construction Problems." Journal of Acoustic Emission, v 8, n 1-2, p s322-s325. World Meeting on Acoustic Emission.
    30.Johnson, K. L. (1970). "The Correlation of Indentation Experiments. " J. Mech. Phys. Solids, p115-126.
    31.Johnson, K. L. (1987). "Contact Mechanics." Cambridge University Press.
    32.Kaiser, J. (1953). "Undersuchungen Uber Das Aufrterten Geraucchen Beim Zevgersuch." Ph.D Thesis. Technische Hochschule, Munich.
    33.Landis, C. (1991/1992). "Automated Determination of first P-wave Arrival and Acoustic Emission Source Location." Journal of Acoustic Emission, v 10, n 1-2, p s97-s103.
    34.Lawn, B. and Marshall D. (1979). "Hardness, Toughness, and Brittleness: an Indentation Analysis." J. Amer. Ceramic Society, v 62, n 7, p 347-350.
    35.Leith, E. N. and Upatnieks, J. (1962). "Reconstructed Wavefronts and Communication Theory." J. Opt. Soc. Am., v 52, p 1123-1130.
    36.Lin, S. T., Hsieh, C. T. and Hu, C. P. (1994). "Two holographic blind-hole methods for measuring residual stress." Exp. Mech., v 34, p 141-147.
    37.Labuz, J. F. and Bridell, J. M. (1983). "Reducing Frictional Constraint in Compression Testion Through Lubrication." International Journal of Rock Mechanics and Mining Sciences. v 30,n4, p 451-455.
    38.Maji, A. K., Wang, J. L. and Lovato, J. (1991). "Electronic speckle pattern interferometry for fracture mechanics testing." Experimental Techniques, v 15, n 3, p 19-23.
    39.Maji, A. K. (1994). "Acoustic emissions from reinforced concrete" Experimental Mechanics, v 34, n 4, p 379-388.
    40.Marsh, D. (1964). "Plastic Flow in Glass. Proc. Roy." Soc. London, Ser. A A279, p 420-435.
    41.Mishnaevsky(Jr.), L. L. (1993). "A Brief Review of Soviet Theoretical Approaches to Dynamic Rock Failure." Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., v 30, n 6, p 663-668
    42.Mishnaevsky(Jr.), L. L. (1995). "Physical Mechanisms of Hard Rock Fragmentation under Mechanical Loading: A review." Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., v 32, n 8, p 763-766.
    43.Ohtsu, M. (1982). "Acoustic Emission Characteristics of Concrete and Fundamental Mechanisms." Ph. D. Thesis, Kyoto University.
    44.Timoshenko, S. P. and Goodier. J. N. "Theory of Elasticity (3rd ed.)." New York, NY: McGraw-Hill.

    QR CODE