簡易檢索 / 詳目顯示

研究生: 吳松旺
Sung-Wang Wu
論文名稱: 前期反復荷重對砂土液化行為之影響
The Influence of Previous Cyclic Loading on Liquefaction Behavior of Sand
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 林宏達
none
陳立憲
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 151
中文關鍵詞: 剪力波速前期反復荷重液化阻抗最大剪力模數
外文關鍵詞: maximum shear modulus, previous cyclic loading, liquefaction resistance, shear wave velocity
相關次數: 點閱:244下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以新店砂作液化阻抗及最大剪力模數之探討,而試驗方法為動力三軸配合彎曲元件試驗。其中試驗控制的變因為前期反復荷重與細粒料含量。
    研究結果顯示,隨著前期反復荷重的增加,試體之液化阻抗亦會增大,但若超過一臨界的前期反復荷重後,試體之液化阻抗則會開始降低。而此臨界前期反復荷重的門檻值隨不同細粒料含量而變動。
    在本研究中,試體經前期反復荷重作用後,剪力波速並未有明顯的變化,主要是隨相對密度之不同而有所改變,顯示本研究所採用之前期反復荷重對試體之擾動,並未達到改變試體剪力波速之程度。


    This research investigates the liquefaction resistance and the maximum shear modulus of Hsin-Dian sand by using cyclic triaxial tests together with bender element tests. The factors to be studied include previous cyclic loading and fines content.
    Test results show that liquefaction resistance generally would increase with increasing previous cyclic loading up to a critical value, and then it would start decreasing with further increase of previous cyclic loading. The critical value of previous cyclic loading would change with different fines content.
    In this research, the shear wave velocities of the samples presheared by cyclic loading did not change obviously. The shear wave velocity is influenced mostly by relative density. It indicates that the level of disturbance due to previous cyclic loading is not high enough to have obvious effect on the shear wave velocity.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 照片目錄 XVI 第一章 緒論 1 1.1前言 1 1.2研究動機 1 1.3研究方法 2 1.4論文內容 2 第二章 文獻回顧 4 2.1液化之定義及機制 4 2.2影響液化阻抗之因素 7 2.2.1相對密度對液化阻抗之影響 7 2.2.2初始應力狀態 8 2.2.3排水條件 9 2.2.4土壤特性 9 2.2.5細粒料含量及細粒料的塑性指數 10 2.2.6前期預剪對液化阻抗之影響 11 2.3影響土壤最大剪力模數之因素 12 2.3.1平均有效圍壓對最大剪力模數之影響 12 2.3.2孔隙比對最大剪力模數之影響 14 2.3.3細粒料對最大剪力模數之影響 15 2.3.4剪力模數與液化阻抗之關係 16 2.4現地試驗液化評估法 17 2.4.1 SPT法 17 2.4.2剪力波速法 20 2.5土壤最大剪力模數的量測方法 22 2.5.1彎曲元件構造 22 2.5.2彎曲元件試驗之原理 23 2.5.3彎曲元件試驗之發展過程 24 2.5.4剪力波有效傳遞距離 25 2.5.5剪力波到達時間之判定法則 25 2.6飽和砂土受剪之相位轉換狀態 26 第三章 試驗計畫 49 3.1試驗土樣介紹 49 3.2試驗計畫 49 3.3試驗儀器及設備介紹 50 3.3.1動力三軸試驗儀 50 3.3.2彎曲元件儀器 51 3.4試體準備方法 52 3.5試驗步驟 53 3.6試驗條件 55 3.7試體之應力與應變 55 3.7.1應力 55 3.7.2應變 57 第四章 試驗結果與討論 67 4.1前期反復荷重下孔隙水壓之變化 68 4.2液化阻抗之探討 69 4.2.1未受前期反復荷重試體之液化阻抗(探討細粒料差異) 69 4.2.2受前期反復荷重試體之液化阻抗 70 4.2.3前期反復荷重下剪應變與孔隙水壓變化 72 4.3剪力波速之探討 74 4.3.1未受前期反復荷重試體之剪力波速 74 4.3.2受前期反復荷重試體之剪力波速 75 4.4剪力波速與液化阻抗之關係 77 4.5不同前期反復荷重下之應力路徑 79 4.5.1施加不同前期反復荷重後之應力路徑 79 4.5.2相位轉換線之探討 80 第五章 結論與建議 119 5.1結論 119 5.2建議 121 參 考 文 獻 122 附錄 129

    1. 李志剛,「蘭陽平原砂土動態性質與液化阻抗之研究」,碩士論文,國立臺灣工業技術學院工程技術研究所營建工程組(1990)。
    2. 吳偉特、夏啟明,細粒塑性程度對台北盆地粉泥質砂土液化特性之研究,第五屆大地工程學術研究討論會論文集,第1-10頁(1993)。
    3. 許家華,「前期反復荷重對砂土液化阻抗及剪力波速之影響」,碩士論文,國立臺灣科技大學學營建工程技術研究所(2005)
    4. 林保延,利用彎曲元件試驗推估砂土動態性質之探討,碩士論文,國立臺灣科技大學學營建工程技術研究所(2005)。
    5. 陳名利,以剪力模數評估砂土液化之研究,碩士論文,國立臺灣工業技術學院工程技術研究所營建工程組(1990)。
    6. 陳國正,「應力路徑對砂土狀態參數之影響」,碩士論文,國立臺灣工業技術學院工程技術研究所營建工程組(1994)。
    7. 陳堯中,土壤液化之機制及評估 ,土壤液化防災與補強技術研討會~營建自動化策略聯盟系列研討會之十(2000)。
    8. 陳界文,「細粒料特性對土壤抗液化強度之影響」,碩士論文,國立台灣大學土木工程研究所(2002)。

    9. 黃朝聰,「冰凍融解過程對砂土液化阻抗及最大剪力模數之影響」,碩士論文,國立臺灣科技大學學營建工程技術研究所(2001)。
    10. 黃信祥,「以現地冰凍土壤求得之剪力模數評估土壤之液化阻抗」,碩士論文,國立臺灣科技大學學營建工程技術研究所(2003)。
    11. 游步上,台北盆地松山層粉土質砂之剪力模數與阻尼比,碩士論文,國立臺灣工業技術學院工程技術研究所營建工程組(1989)。
    12. 曾清祥,砂土液化及穩定狀態之研究,碩士論文,國立臺灣工業技術學院營建工程技術研究所(1996)。
    13. 楊沂恩,細料含量對砂土液化影響之研究,碩士論文,國立成功大學土木工程學研究所(1984)。
    14. 廖廷勖,「過壓密對砂土動態性質及穩定狀態之影響」,碩士論文,國立臺灣科技大學學營建工程技術研究所(1998)。
    15. 賴穎芳,以非均向壓密對砂土最大剪力模數與液化強度關係之影響,碩士論文,國立臺灣工業技術學院工程技術研究所營建工程組(1993)。
    16. 簡連貴、李建中、許先才,冰凍取樣技術在粒狀土壤力學行為之研究,第五屆大地工程學術研究討論會論文集,第93-100頁(1993)。

    17. 韓明憲,砂土最大剪力模數與液化阻抗關係之探討,碩士論文,國立臺灣工業技術學院營建工程技術研究所(1995)。
    18. 葉建益,「單剪應力下砂土受震後液化阻抗性質之研究」,碩士論文。國立台灣大學土木工程研究所(1998)。
    19. 曾顯琳,「過壓密對砂土穩定狀態及液化阻抗之影響」,碩士論文,國立臺灣工業技術學院營建工程技術研究所(1997)。
    20. 蔡弘源,「台北粉土質砂狀態參數之探討」,碩士論文,國立臺灣工業技術學院營建工程技術研究所(1992)。
    21. Andrus, R.D. and Stokoe, K.H., II., " Liquefaction Resistance Based on Shear Wave Velocity," Proceeding, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, ed. By T.L. Youd and I.M. Idriss, Tech. Report NCEER-97-0022, pp.89-128(1997).
    22. Andrus, R.D. and Stokoe, K.H., II., "Liquefaction Resistance of Soils from Shear-Wave Velocity." Journal of Geotechnical and Geoenvion-
    mental Engineering, ASCE, Vol.126, No.8, pp.1015-1025(2000).
    23. Baig, S., Picornell, M. and Nazarian, S., "Low Strain Shear Moduli of Cemented Sand," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123, No.6, pp.540-545(1997).
    24. Clough, G.W., Iwabuchi, J., Rad, N.S. and Kuppusamy, T., "Influence of Cemention on Liquefaction of Sands," Journal of the Geotechnical Engineering Division, ASCE, Vol.115, No.8, pp.1102~1117(1989).
    25. Castro, G. (1975), Liquefaction and Cyclic Mobility of Saturated Sands, JEFD, ASCE, Vol.102, No.GT6,pp.551-569.
    26. Castro, G. and Christian, J. T, (1976) "Shear Strength of Soil in Cyclic Loading",JEGD,ASCE,Vol.102, No. GT9,pp.887-894.
    27. Dyvik, R. and Madshus, C., "Lab Measurements of Gmax Using Bender Elements," Advances in the Art of Testing Soils Under Cyclic Conditions, V. Khosla, Ed., ASCE, New York, pp. 186-196(1985).
    28. Finn, W. D., Bransby, P.L., and Picreing, T., "Effect of Strain History on Loquefaction of Sand," Journal of the Soil Mechanics and Foundations Division , ASCE, June, 1970, pp.1917-1934. (1970).
    29. Hardin, B.O. and Black, W.L., "Vibration Modulus of Normally Consolidation Clay," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.94, No.SM2, pp.353-369(1968).
    30. Hardin, B.O. and Drenvich, V.P., "Shear Modulus and Damping in Soils: Design Equations and Curves," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.98, No.SM7, pp.667-692(1972).
    31. Hardin, B.O., "The Nature of Stress-Strain Behavior of Soil," Conference on Earthquake Engineering and Soil Dynamics, ASCE, Vol.1, pp.3-90(1978).
    32. Iwasaki, T., Tatsuoka, F., "Effect of Grain Size and Grading on Dynamic Shear Modulus of Sands," Soils and Foundations, Vol.17, No.3, pp.19-35(1977).
    33. Iwasaki, T., Tatsuoka, F. and Takagi, Y., "Shear Moduli of Sands Under Cyclic Torsional Shear Loading," Soils and Foundations, Vol.18, No.1, Mar., pp.39-56(1978).
    34. Ishihara, K. and Tadatsu, H., "Effecs of Over-consolidation and K0 Conditions on the Liquefaction Characteristics of Sands," Soils and Foundations, Vol.19, No.4, Dec., pp.59-68 (1979).
    35. Ishihara, K. and Okada, S. (1978) "Effect of Stress History on Cyclic Behavior of Sand", Soils and Foundation, Vol.18, No.4, pp.31-45.
    36. Kayen, R.E., Mitchell, J.K., Seed, R.B., Lodge, A., Nishi, S. and Coutinho, R., "Evaluation of SPT-,CPT-,and Shear Wave–Based Methods for Liquefaction Potential Assessment Using Loma Prieta Data, "Proceedings, Fourth Japan-US Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Technical Report NCEER-92-0019, M. Hamada and T. D. O,Rourke, eds., Vol. 1, pp. 177-204(1992).
    37. Lee, K.L. and Fitton, J.A., "Factors Affecting the Cyclic Loading Strength of Soil," Vibration Effects of Earthquakes on Soils and Foundations﹐ASTM﹐STP 450, pp.71- 95(1969).
    38. Lohani, T.N., Imai, G. and Shibuya, S., "Determination of Shear Wave Velocity in Bender Element Test," Proceeding of Earthquake Geotechnical Engineering, Rotterdam, pp. 101-106(1999).
    39. Peacock, W.H. and Seed, H.B., "Sand Liquefaction Under Cyclic Loading Simple Shear Conditions," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.9, No. SM3, pp.689-708(1968).
    40. Seed, H.B. and Lee, K.L., "Liquefaction of Saturated Sand During Cyclic Loading," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.92, No.SM6, pp. 105-133 (1966).
    41. Seed, H.B. and Idriss, I.M., "Shear Moduli and Damping Factors for Dynamic Respons Analysis," Report No. EERC pp.70-100, Earthquake Engineering Research Center, University of California, Berkley, Calif.(1970).
    42. Seed, H.B. and Idriss, I.M., "Simplified Procedure for Evaluating Soil Liquefaction Potential," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273(1971).
    43. Seed, H.B., Idriss, I.M., Makdidi, F., and Banerjee, N., "Representation of Irregular Stress-Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses," Report No. EERC 75-29, Earthquake Engineering Research Center, University of California at Berkeley(1975).
    44. Seed, H.B., Mori, K., and Chan, C. K. "Influence of Seismic History on Liquefaction of Sand," Journal of the Geotechnical Engineering Division, ASCE, Vol.103, No.GT4, pp.257-271(1977).
    45. Shen, C.K., Vrymoed, J.L. and Uyeno, C.K., "The Effect of Fines on Liquefaction of Sands," Proceedings of the 9th International Conference on Soil Mechanic and Foundation Engineering, Tokyo, Vol.2, pp.281-285 (1977).
    46. Suzuki and Toki, "Effect of Preshearing on Liquefaction Characteristics of Saturated Sand Subjected to Cyclic Loading," Soils and Foundations, v 24,n 2, pp.16-28(1984).
    47. Tokimatsu, K. and Uchida, A., "Correlation between Liquefaction Resistance and Shear Wave Velocity," Soils and Foundations, Vol.30, No.2, pp.33-42(1990).
    48. Thevanayagam, S., Fiorillo, M. and Liang, J. "Effect of Non- Plastic Fines on Undrained Cyclic Strength of Silty Sands," Soil Dynamics and Liquefaction, pp. 115-123(2000).
    49. Vaid, Y.P. and Chern, J.C., "Cyclic and Monotonic Undrained Response of Saturated Sands," ASCE National Convension Session on Advance in the Art of Testing Soils Under Cyclic Loading, Detroit , pp.120-147 (1985).
    50. Viggiani, G. and Atkinson, J.H., "Interpretation of Bender Element Tests," Geotechnique , Vol.45, No. 1, pp. 149-154(1995).
    51. Youd, T.L., and Nobel, S. K., "Magnitude Scaling Factors," Proceeding, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Nat. Ctr. For Earthquake Engr. Res., State Univ. of New York at Buffalo, pp. 149-165(1996).
    52. Youd, T. L.,(1977), "Packing Changes and Liquefaction Susceptibility", JGED, ASCE,Vol.103,GT8,pp918-922.
    53. Zhou, Y. G., Chen, Y. M., Ke, H., "Correlation of Liquefaction Resistance with Shear Wave Velocity Base on Laboratory Study Using Bender Element," Journal of Zhejiang University science, Vol.6, n 8, pp.805-812(2005).

    QR CODE