簡易檢索 / 詳目顯示

研究生: 林雍勝
Yung-sheng Lin
論文名稱: 岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化
The Influence of Confinement and Wedge Angle on Rock Indentation Fracture and the Relevant Evolution of Acoustic Emission
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 張大鵬
Ta-Peng Chang
陳立憲
Li-Hsien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 110
中文關鍵詞: 貫切聲射微震裂源側向圍壓刀楔角度叢聚
外文關鍵詞: micro-seismic, locations, localization., lateral confinement, wedge angle
相關次數: 點閱:178下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今台灣隧道工程採用全斷面機械式機具進行開挖之案例日增,對於隧道施工鑽掘之安全與效率倍受重視。本研究以接觸破壞理論分析單一機械刀口與岩材承受貫壓之互制力學行為,乃至破壞之演化機理,並藉由建置具圍壓系統之貫切破壞實驗儀器設備,採用水泥砂漿及大理岩供作試驗材料,結合非破壞檢測之聲射(acoustic emission, AE)技術,探求微觀尺度之微震裂源定位,並與巨觀尺度下主要之裂縫初裂及延伸作比較研析。依宏觀及微觀之裂縫發展及其相關之力學行為,以側向圍壓與刀楔角度為試驗變數,資以探討大地應力及機械鑽刀對於貫切破壞行為之影響。
    本研究之正向貫切試驗採用單一尖狀(tip with no wear flat)之楔形刀口進行貫壓,於無圍壓條件下以裂縫開口位移(crack mouth opening displacement, CMOD)控制;而有側向圍壓條件下,改用衝程控制,使兩者在破壞後不致於失穩開裂,以求取尖峰強度前後之完整加載歷程。
    從巨觀破壞記錄觀察可知,側向圍壓之增加,其最大貫切力及其貫切深度隨之增大,而延性破壞之趨勢亦隨之增加;然而側壓對貫切壓力之影響則不甚敏感。同時經由微觀聲射技術所得微震裂源之比較分析,發現圍壓越大,可能發生脆性裂縫之初裂位置,及延裂路徑偏離貫切軸越大、彈-塑性界面半徑亦因之增加、其延或脆性破壞之趨勢亦與巨觀之結果相符。
    再者,隨著貫切楔角之加大,最大貫切力亦因此增加,相對應之臨界貫切深度及峰前之貫切壓力則隨之下降。其裂縫生衍路徑,則較不受刀楔角度影響。而從微震裂源之觀察發現,隨楔角之漸增(即由尖變鈍),叢聚現象將提早發生,且其位源集中區域,亦因此而漸靠近貫入點,在產生脆性破壞下,無因次化之彈-塑性區半徑,則明顯減小。
    最後,將實驗所得之貫切壓力及無因次化之彈-塑性區半徑,與理論解析解比對驗證,本研究得到良好之對應。


    Nowadays, for tunnel construction in Taiwan, the full-faced mechanical boring method is used more frequently due to the consideration on safety and efficiency. The objective of this research is to investigate the effects of in-situ stresses, which are simulated by different lateral confinement, and wedge angle on single-indentor cutting mechanism. By attempting to depict how a single indentation works, and to understand its principle of fracture progress over micro view, nondestructive technique of Acoustic Emission (AE) was used to monitor during indentation test. To set up a stable fracturing process, crack mouth opening displacement (CMOD) control was adopted in the case of free lateral confinement, and stroke control was used with confinement. Meanwhile, the wedge indentor tip with no wear flat was used to conduct a series of fracture experiments to detect the relation between micro-seismic locations and macro-fracture development.
    For the influence of confinement on the indentation tests, results show that both the maximum indentation force and its corresponding penetration depth increase with increasing lateral confining stress, because of the tendency of ductile development. However, confining effect on the magnitude of indentation pressure is insignificant because of the concept of self-similarity. In unconfined case, the position of initial tensile crack occurs right underneath the indentor and propagates along symmetric vertical axis. On the other hand, tensile crack may or may not occur under confinement. Moreover, if fracture is possible to take place in the case of confinement, the tensile crack still originates on the critical elasto-plastic interface but not right underneath the indentor, and its propagation diverts significantly from vertical axis even just applies a small relative confinement (Ψ=0.1). Furthermore, experiments show that the radius of the elasto-plastic interfacial enlarges as adding lateral confinement.
    With larger wedge angle, the maximum indentation force would increase, but the indentation pressure and the critical indentation depth would decrease. On the other hand, the direction of crack propagation did not change much with various wedge angles. Furthermore, the localization would occur earlier and the plastic zone interface would decrease with larger wedge angle.
    At last, this research also demonstrated that the experimental results of the indentation pressure and plastic zone interface compared quite well with the formula of cavity expansion model.

    論文摘要 I 英文摘要 III 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號對照表 XII 第一章、緒論 1 1.1研究背景 1 1.2研究目的 1 1.3研究範圍與方法 2 1.4論文內容 3 第二章、文獻回顧 6 2.1破壞模擬—貫切試驗之發展 6 2.2貫切試驗相關理論 10 2.2.1 孔洞擴展模式(Cavity Expansion Model, CEM) 10 2.2.2線彈性破壞力學之破裂模式 14 (Linear Elastic Fracture Model, LEFM) 14 2.3非破壞檢測—聲射技術之發展 17 2.4聲射技術相關理論 19 2.4.1聲射基本原理 19 2.4.2聲射定位法則 21 第三章、試驗架構 29 3.1試驗材料 30 3.2試驗儀器 32 3.2.1破壞試驗部分:平面問題之貫切暨側向圍壓系統 32 3.2.2非破壞檢測部分:聲射訊號接收系統 34 3.3試驗方法 37 3.3.1試驗前之校正試驗 37 3.3.2無側圍壓之貫切試驗 42 3.3.3側向圍壓施加之貫切試驗 46 第四章 試驗結果與分析 66 4.1 試驗參數說明 67 4.2 側向圍壓之影響 71 4.2.1 完整之F-d加載歷程與巨觀破壞模式 71 4.2.2 加載歷程與微裂縫發展之關係 72 4.2.3 貫切區域形成彈-塑性界面發展之探討 75 4.3 刀楔角度之影響 79 4.3.1 完整之F-d加載歷程與巨觀破壞模式 79 4.3.2 加載歷程與微裂縫發展之關係 80 4.3.3 貫切區域形成彈-塑性界面發展之探討 81 4.4 實驗值與理論解之比對 82 第五章 結論與建議 102 5.1結論 102 5.1.1側向圍壓之影響 102 5.1.2刀楔角度之影響 104 5.1.3實驗值與理論值之比對 105 5.2建議 105 5.2.1破壞模擬—貫切試驗之建議 105 5.2.2非破壞檢測—聲射技術之建議 106 參考文獻 107

    1.宋煥文,「三點彎曲作用下岩石破裂機制之研究」,國立台灣科技大學營建工程技術研究所碩士論文,1994年。
    2.李佳龍,「音洩定位法於岩石材料之應用」,國立成功大學資源工程學系碩士論文,2003年。
    3.林雍勝,陳立憲,黃國忠,陳堯中,「聲射法於類岩材料受側向圍壓下之貫切破壞探討」,岩盤工程研討會論文集,2006年。
    4.林楨中,陳彥翰「混凝土音洩特性探討」,營造工程音波監測防災監控技術研究期中報告,行政院勞工委員會勞工安全衛生研究所,2004年。
    5.張仲佐,「非破壞性音洩凱撒效應對混凝土材料荷載歷史之檢核」,國立交通大學土木工程學系碩士論文,1995年。
    6.陳家豪,「巴西試驗之音射定位分析研究」,岩盤工程研討會論文集,2004年。
    7.曾祥璣,「水渾爐石及矽灰水泥砂漿受壓過程中音洩訊號特性之研究」,國立交通大學土木工程學系碩士論文,1992年。
    8.黃兆龍,混凝土性質和行為,1995年,第六版。
    9.黃兆龍,營建材料學,2002年,第七版。
    10.楊斯然,「飛灰水泥砂漿之音洩訊號特性研究」,國立交通大學土木工程學系碩士論文,1991年。
    11.廖志信,「岩石材料中音射發生源之位置探測研究」,國立成功大學土木工程研究所碩士論文,1993年。
    12.蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,國立台灣科技大學營建工程系碩士論文,2005年。
    13.劉全偉,「溫度及壓力對花蓮大理岩力學行為之影響研究」,國立台灣科技大學營建工程系碩士論文,1996年。
    14.鄺寶山,「花蓮大理岩在圍壓下力學行為之研究」,國立台灣大學土木工程學系碩士論文,1992年。
    15.譚明德,「水泥砂漿受壓之訊號音減特性」,國立交通大學土木工程學系博士論文,1996年。
    16.經濟部礦物局網站,http://www.mine.gov.tw,2006年。
    17.Alehossein, H; Detournay, E.; Huang, H.(2000). "Analytical Model for the Indentation of Rocks by Blunt tools." Rock Mechanics and Rock Engineering, v 33, n 4, p 267-284.
    18.American society for testing and materials (ASTM E610-82) (1999).
    "Standard Definitions of Terms Reating to Acoustic Emission."
    19.American society for testing and materials (ASTM E976-84) (2000).
    "Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response."
    20.Berthelot, J. M. (1993). "Frequency Analysis of Acoustic Emission
    Signals in Concrete." Journal of Acoustic Emission, v 11, n 1, p 11-18.
    21.Boussinesq, J. (1885). Applications of Potentials for the Study of Equilibrium and Movement of Elastic Solids (in French). Paris: Gautier-Villars.
    22.Bray, Don. E. and McBride. (1992). "Acoustic Emission Technology." Nondestructive Testing Techniques, p 345-377, John Wiley & Sons Inc.
    23.Chen L.H. (2002) "Failure of Rock under Normal Wedage Indentation.", Ph. D. Thesis, University of Minnesota.
    24.Damjanac, B., and Detournay E. (1995). "Numerical Modelling of Normal Wedge Indentation in Rocks." In J. J. K. Daemon and R. A. Schultz (Eds.), Proc. 35th US Rock Mechanics Symposium, p 349-354. Balkema.
    25.Detournay, E., Fairhurst, C. and Labuz J. F. (1995). "A Model of Tensile Failure Initiation under an Indentor." In P. Rossmanith (Ed.), Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rock (MJFR-S), Vienna, Austria.
    26.Detournay, E., Huang H., and Damjanac B. (2003). "Normal Wedge Indentation of Rocks by a Wedge-shaped tool 1: Theoretical Model. Int. J. Rock Mech. Min." Sci. & Geomech. Abstr.. Submitted.
    27.Drescher, A. and Kang Y. (1987). "Kinematic Approach to Limit Load for Steady Penetration in Rigid-plastic Soils." Geotechnique, v 37, n 3, p 233-246.
    28.Erdogan, F. and Sih, G. C. (1963). ASME J. Basic Engrg, 85, 519-527
    29.Hertz, H. H. (1896). Hertz's Miscellaneous papers. London: Macmillan.
    30.Holcomb, D. J. and L. S. Costin (1986). Detecting damage surface in brittle materials using acoustic emission. ASME J. Appl. Mech. 53, 536-544.
    31.Huang, H., B. Damjanac, and Detoumay E. (1998). "Normal Wedge Indentation in Rocks with lateral Confinement." Rock Mechanics and Rock Engineering, v 31, n 2, p 81-94.
    32.James, D. L. (1989). "Acoustic Emission Investigation into some Concrete Construction Problems." Journal of Acoustic Emission, v 8, n 1-2, p s322-s325.World Meeting on Acoustic Enission.
    33.Johnson, K. L. (1970). "The Correlation of Indentation Experiments. J. Mech." Phys. Solids, p115-126.
    34.Johnson, K. L. (1987). "Contact Mechanics." Cambridge University Press.
    35.Kaiser, J. (1953). "Undersuchungen uber das Aufrterten Geraucchen beim Zevgersuch." Ph.D Thesis. Technische Hochschule, Munich.
    36.Landis, C. (1991/1992). "Automated Determination of first P-wave Arrival and Acoustic Emission Source Locttion." Journal of Acoustic Emission, v 10, n 1-2, p s97-s103.
    37.Labuz, J. F. (1985). A Study of the Fracture Process Zone in Rock. Ph. D. thesis, Dept. of Civil Eng., Northwestern University, Evanston, IL.
    38.Lawn, B. and Evans A. (1977). "A Model for Crack Initiation in Elastic/plastic Indentation Field." J. Mater, Sci., v 12, p 2195-2199.
    39.Lawn, B. and Marshall D. (1979). "Hardness, Toughness, and Brittleness: an Bndentation Analysis. J. Amer." Ceramic Society, v 62, n 7, p 347-350.
    40.Lawn, B. and Swain M. (1975). "Microfracture Beneath the Point Indentation in Brittle Solids." J. Mater. Sci., p 113-122.
    41.Lawn, B. and Wilshaw R. (1975). "Review indentation fracture: Principles and Applications." J. Mater. Sci., v 10, p 1049-1081.
    42.Maji, A.K. (1994). "Acoustic emissions from reinforced concrete" Experimental Mechanics, v 34, n 4, p 379-388.
    43.Marsh, D. (1964). "Plastic Flow in Glass. Proc. Roy." Soc. London, Ser. A A279, p 420-435.
    44.Mishnaevsky(Jr.), L. L. (1993). "A Brief Review of Soviet Theoretical Approaches to Dynamic Rock Failure. Int. J. Rock Mech." Min. Sci. & Geomech. Abstr. v 30, n 6, p 663-668.
    45.Mishnaevsky(Jr.), L. L. (1995). "Physical Mechanisms of Hard Rock Fragmentation under Mechanical Loading: A review. Int. J. Rock Mech." Min. Sci. & Geomech. Abstr., v 32, n 8, p 763-766.
    46.MTS-810 User's Manual.
    47.Ohtsu, M. (1982) "Acoustic Emission Characteristics of Concrete and Fundamental Mechanisms.", Ph. D. Thesis, Kyoto University.
    48.Reymond, M. C.(1983). "Comporetment des Carriers Apres Tirs de Mines.(Behavior of Quarries after a Blast.)" Bulletin of the International Association of Engineering Geology, n 26-27, p 295-298.
    49.Shah, K. R.(1995). "Stress dependence of source mechanisms from acoustic emission" Proceedings of Engineering Mechanics, v 2, p 1151-1154.
    50.Timoshenko, S. P. and Goodier. J. N. "Theory of Elasticity (3rd ed.)." New York, NY: McGraw-Hill.
    51.Whittaker B. N.; Singh R. N., and Gexin Sun (1992). Rock Fracture Mechanics-Principles, Design and Applications.
    52.Zietlow, W.K.; Labuz, J.F. (1998). "Measurement of the Intrinsic Process Zone in Rock using Acoustic Emission." International Journal of Rock Mechanics and Mining Sciences, v 35, n 3, p 291-299.

    QR CODE