簡易檢索 / 詳目顯示

研究生: 許家華
Chia-Hua Hsu
論文名稱: 前期反復荷重對砂土液化阻抗及剪力波速之影響
The Influence of Previous Cyclic Loading on Liquefaction Resistance and Shear Wave Velocity of Sand
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 歐章煜
C.Y. Ou
陳立憲
L.H. Chen
游步上
P.S. You
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 112
中文關鍵詞: 動力三軸試驗剪力波速彎曲元件試驗前期反復荷重
外文關鍵詞: bender element test, dynamix triaxial test, shear wave velocity, previous cyclic loading
相關次數: 點閱:200下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究對重模試體施加不同大小之前期反復荷重,探討前期反復荷重對試體剪力波速及液化阻抗之影響,並結合彎曲元件試驗及動力三軸試驗探討砂土剪力波速與液化阻抗之關係,及砂土受前期反復荷重後,對此關係之影響。以新店砂製作重模試體,試體壓密後先進行彎曲元件試驗求其剪力波速,接著進行動力三軸試驗求其液化阻抗。

    研究結果顯示,重模試體之剪力波速越大其液化阻抗越高,將本研究所得之剪力波速與液化阻抗之關係和其他學者之研究成果互相比較,在相同正規化剪力波速時,本研究所得之液化阻抗介於Andrus and Stokoe (2000)及Zhou et al.(2005)之間。

    前期反復荷重之影響方面,當試體承受一較小的前期反復荷重後其液化阻抗會增加,但前期反復荷重應力比(PCSR )超過了0.15後,其液化阻抗反而降低,前期反復荷重對剪力波速並沒有太大的影響,這也表示若要以剪力波速來推估液化阻抗,必須進行更完整試驗之探討,以釐清兩者之關係。


    The research of this experiment is to discover the influence of previous cyclic loading on liquefaction resistance and shear wave velocity incurred in the reconstituted specimens imposed with various previous cyclic loading, in view to study the relationship between liquefaction resistance and shear wave velocity under previous cyclic loading. The tools used for the experiment are bender element test and cyclic triaxial test which will show us how reconstituted specimens are influenced by previous cyclic loading in terms of liquefaction resistance and shear wave velocity.Based on Hsin-Dian sand, the reconstituted specimens is made and consolidated, then put under bender element test to acquire shear wave velocity, followed by cyclic triaxial test to obtain liquefaction resistance.
    The result shows,on the reconstituted specimens, the larger the shear wave velocity is, the higher the liquefaction resistance gets. Compare this result between the shear wave velocity and the liquefaction resistance from our experiement with those from other research results, it can be seen that under the same normalization shear wave velocity, the liquefaction resistance from this experiment falls between Andrus and Stokoe (2000) and Zhou et al.(2005).
    On the influence of previous cyclic loading , we can see liquefaction resistance increases when specimens is imposed with small previous cyclic loading, but decreases while previous cyclic stress ratio ( PCSR ) goes beyond 0.15. On the other hand, the previous cyclic loading does not show obvious impact on shear wave velocity which indicates it would take more thorough tests and experiments to be able to conclude the liquefaction resistance via shear wave velocity.

    目錄 中文摘要I 英文摘要III 誌謝IV 目錄V 表目錄VII 圖目錄VIII 照片目錄XI 第一章 緒論1 1.1前言1 1.2研究動機1 1.3研究內容2 第二章 文獻回顧3 2.1液化之定義及機制3 2.2影響液化阻抗之因素5 2.2.1相對密度對液化阻抗之影響6 2.2.2前期預剪對液化阻抗之影響7 2.3影響砂土最大剪力模數之因素8 2.3.1平均有效圍壓對最大剪力模數之影響9 2.3.2孔隙比對最大剪力模數之影響10 2.4剪力模數與液化阻抗之關係11 2.5土壤最大剪力模數的量測方法12 2.5.1彎曲元件構造13 2.5.2彎曲元件試驗之原理14 2.5.3彎曲元件試驗之發展過程15 2.5.4剪力波有效傳遞距離16 2.5.5剪力波到達時間之判定法則16 2.6液化潛能之評估方法17 第三章 試驗計畫22 3.1試驗土樣22 3.2試驗計畫22 3.3試驗儀器及設備23 3.3.1動力三軸試驗23 3.3.2彎曲元件試驗24 3.4試體準備方法25 3.5試驗步驟27 3.6試驗條件29 3.6.1液化阻抗與剪力波速分析29 3.6.2最大剪力模數分析29 3.7試體之應力與應變30 第四章 試驗結果與討論33 4.1前期反復荷重下孔隙水壓之變化33 4.1.1前期反復荷重對孔隙水壓激發之影響34 4.1.2受前期反復荷重後壓密量之變化34 4.2液化阻抗之探討35 4.2.1重模試體之液化阻抗35 4.2.2受前期反復荷重試體之液化阻抗36 4.2.3孔隙水壓變化與液化阻抗之關係38 4.3剪力波速之探討39 4.3.1重模試體之剪力波速40 4.3.2受前期反復荷重試體之剪力波速40 4.3.3孔隙比對最大剪力模數之影響41 4.4剪力波速與液化阻抗之關係42 第五章 結論與建議46 5.1結論46 5.2建議48 參考文獻...............................................106

    1. 李志剛,「蘭陽平原砂土動態性質與液化阻抗之研究」,碩士論文,國立臺灣工業技術學院工程技術研究所營建工程組(1990)。
    2. 吳偉特、夏啟明,細粒塑性程度對台北盆地粉泥質砂土液化特性之研究,第五屆大地工程學術研究討論會論文集,第1-10頁(1993)。
    3. 林保延,利用彎曲元件試驗推估砂土動態性質之探討,碩士論文,國立臺灣科技大學學營建工程技術研究所(2005)。
    4. 陳名利,以剪力模數評估砂土液化之研究,碩士論文,國立臺灣工業技術學院工程技術研究所營建工程組(1990)。
    5. 陳堯中,土壤液化之機制及評估 ,土壤液化防災與補強技術研討會~營建自動化策略聯盟系列研討會之十~(2000)。
    6. 陳界文,「細粒料特性對土壤抗液化強度之影響」,碩士論文,國立台灣大學土木工程研究所(2002)。
    7. 黃朝聰,「冰凍融解過程對砂土液化阻抗及最大剪力模數之影響」,碩士論文,國立臺灣科技大學學營建工程技術研究所(2001)。
    8. 黃信詳,「以現地冰凍土壤求得之剪力模數評估土壤之液化阻抗」,碩士論文,國立臺灣科技大學學營建工程技術研究所(2003)。

    9. 游步上,台北盆地松山層粉土質砂之剪力模數與阻尼比,碩士論文,國立臺灣工業技術學院工程技術研究所營建工程組(1989)。
    10. 曾清祥,砂土液化及穩定狀態之研究,碩士論文,國立臺灣工業技術學院營建工程技術研究所(1996)。
    11. 楊沂恩,細料含量對砂土液化影響之研究,碩士論文,國立成功大學土木工程學研究所(1984)。
    12. 廖廷勖,「過壓密對砂土動態性質及穩定狀態之影響」,碩士論文,國立臺灣科技大學學營建工程技術研究所(1998)。
    13. 賴穎芳,以非均向壓密對砂土最大剪力模數與液化強度關係之影響,碩士論文,國立臺灣工業技術學院工程技術研究所營建工程組(1993)。
    14. 簡連貴、李建中、許先才,冰凍取樣技術在粒狀土壤力學行為之研究,第五屆大地工程學術研究討論會論文集,第93-100頁(1993)。
    15. 韓明憲,砂土最大剪力模數與液化阻抗關係之探討,碩士論文,國立臺灣工業技術學院營建工程技術研究所(1995)。
    16. Andrus, R.D. and Stokoe , K.H., II., " Liquefaction Resistance Based on Shear Wave Velocity," Proceeding, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, ed. By T.L. Youd and I.M. Idriss, Tech. Report NCEER-97-0022, pp.89-128(1997).
    17. Andrus, R.D. and Stokoe , K.H., II., "Liquefaction Resistance of Soils from Shear-Wave Velocity." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.126, No.8, pp.1015-1025
    (2000).
    18. Baig, S., Picornell, M. and Nazarian, S., "Low Strain Shear Moduli of Cemented Sand," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123, No.6, pp.540-545(1997).
    19. Clough, G.W., Iwabuchi, J., Rad, N.S. and Kuppusamy, T., "Influence of Cemention on Liquefaction of Sands," Journal of the Geotechnical Engineering Division, ASCE, Vol.115, No.8, pp.1102~1117(1989).
    20. Dyvik, R. and Madshus, C., "Lab Measurements of Gmax Using Bender Elements," Advances in the Art of Testing Soils Under Cyclic Conditions, V. Khosla, Ed., ASCE, New York, pp. 186-196(1985).
    21. Finn, W. D., Bransby, P.L., and Picreing, T., "Effect of Strain History on Loquefaction of Sand," Journal of the Soil Mechanics and Foundations Division , ASCE, June, 1970, pp.1917-1934. (1970).
    22. Hardin, B.O. and Black, W.L., "Vibration Modulus of Normally Consolidation Clay," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.94, No.SM2, pp.353-369(1968).
    23. Hardin, B.O. and Drenvich, V.P., "Shear Modulus and Damping in Soils: Design Equations and Curves," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.98, No.SM7, pp.667-692(1972).
    24. Hardin, B.O., "The Nature of Stress-Strain Behavior of Soil," Conference on Earthquake Engineering and Soil Dynamics, ASCE, Vol.1, pp.3-90(1978).

    25. Iwasaki, T., Tatsuoka, F., "Effect of Grain Size and Grading on Dynamic Shear Modulus of Sands," Soils and Foundations, Vol.17, No.3, pp.19-35(1977).
    26. Iwasaki, T., Tatsuoka, F. and Takagi, Y., "Shear Moduli of Sands Under Cyclic Torsional Shear Loading," Soils and Foundations, Vol.18, No.1, Mar., pp.39-56(1978).
    27. Ishihara, K. and Tadatsu, H., "Effecs of Over-consolidation and K0 Conditions on the Liquefaction Characteristics of Sands," Soils and Foundations, Vol.19, No.4, Dec., pp.59-68 (1979).
    28. Kayen, R.E., Mitchell, J.K., Seed, R.B., Lodge, A., Nishi, S. and Coutinho, R., "Evaluation of SPT-, CPT-, and Shear Wave–Based Methods for Liquefaction Potential Assessment Using Loma Prieta Data," Proceedings, Fourth Japan-US Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Technical Report NCEER-92-0019, M. Hamada and T. D. O,Rourke, eds., Vol. 1, pp. 177-204(1992).
    29. Lee, K.L. and Fitton, J.A., "Factors Affecting the Cyclic Loading Strength of Soil," Vibration Effects of Earthquakes on Soils and Foundations﹐ASTM﹐STP 450, pp.71- 95(1969).
    30. Lohani, T.N., Imai, G. and Shibuya, S., "Determination of Shear Wave Velocity in Bender Element Test," Proceeding of Earthquake Geotechnical Engineering, Rotterdam, pp. 101-106(1999).
    31. Peacock, W.H. and Seed, H.B., "Sand Liquefaction Under Cyclic Loading Simple Shear Conditions," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.9, No. SM3, pp.689-708(1968).
    32. Pennington, D. S., Nash, D. F. T.,and Lings, M. L., "Horizontally Mounted Bender Elements for Measuring Anisotropic Shear Moduli in Triaxial Clay Specimens," Geotechnical Testing Journal, Vol. 24, No. 2, pp. 133-144(2001).
    33. Robertson, P.K., Woeller, D.J., and Finn, W.D.L., "Seismic CPT for Evaluating Liquefaction Potential Under Cyclic Loading," Canadian Geotechnical Journal, Vol. 29, pp. 686-695(1992).
    34. Seed, H.B. and Lee, K.L., "Liquefaction of Saturated Sand During Cyclic Loading," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.92, No.SM6, pp. 105-133 (1966).
    35. Seed, H.B. and Idriss, I.M., "Shear Moduli and Damping Factors for Dynamic Respons Analysis," Report No.EERC pp.70-100, Earthquake Engineering Research Center, University of California, Berkley, Calif.(1970).
    36. Seed, H.B. and Idriss, I.M., "Simplified Procedure for Evaluating Soil Liquefaction Potential," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273(1971).
    37. Seed, H.B., Idriss, I.M., Makdidi, F., and Banerjee,N., "Representation of Irregular Stress-Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses," Report No. EERC 75-29, Earthquake Engineering Research Center, University of California at Berkeley(1975).
    38. Seed, H.B., Mori, K., and Chan, C. K. "Influence of Seismic History on Liquefaction of Sand," Journal of the Geotechnical Engineering Division, ASCE, Vol.103, No.GT4, pp.257-271(1977).

    39. Shen, C.K., Vrymoed, J.L. and Uyeno, C.K., "The Effect of Fines on Liquefaction of Sands," Proceedings of the 9th International Conference on Soil Mechanic and Foundation Engineering, Tokyo, Vol.2, pp.281-285 (1977).
    40. Suzuki and Toki, "Effect of Preshearing on Liquefaction Characteristics of Saturated Sand Subjected to Cyclic Loading," Soils and Foundations, v 24,n 2, pp.16-28(1984).
    41. Tokimatsu, K. and Uchida, A., "Correlation between Liquefaction Resistance and Shear Wave Velocity," Soils and Foundations, Vol.30, No.2, pp.33-42(1990).
    42. Thevanayagam, S., Fiorillo, M. and Liang, J. "Effect of Non- Plastic Fines on Undrained Cyclic Strength of Silty Sands," Soil Dynamics and Liquefaction, pp. 115-123(2000).
    43. Vaid, Y.P. and Chern, J.C., "Cyclic and Monotonic Undrained Response of Saturated Sands," ASCE National Convension Session on Advance in the Art of Testing Soils Under Cyclic Loading, Detroit , pp.120-147 (1985).
    44. Viggiani, G. and Atkinson, J.H., "Interpretation of Bender Element Tests," Geotechnique ,Vol.45, No. 1, pp. 149-154(1995).
    45. Youd, T.L., and Nobel, S. K., "Magnitude Scaling Factors," Proceeding, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Nat. Ctr. For Earthquake Engr. Res., State Univ. of New York at Buffalo, pp. 149-165(1996).

    46. Zhou, Y. G., Chen, Y. M., Ke, H., "Correlation of Liquefaction Resistance with Shear Wave Velocity Base on Laboratory Study Using Bender Element," Journal of Zhejiang University science, Vol.6, n 8, pp.805-812(2005).

    QR CODE