簡易檢索 / 詳目顯示

研究生: 蔡昇哲
Sheng-Che Tsai
論文名稱: 應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討
A Study of the Application of Nondestructive Technique of Acoustic Emission to Rock Indentation Fracture Test
指導教授: 陳堯中
Yao-Chung Chen
陳立憲
Li-hsien Chen
口試委員: 游步上
P. S. You
林宏達
H. D. Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 166
中文關鍵詞: 聲射非破壞檢測微震事件叢聚貫切破壞裂縫開口位移
外文關鍵詞: Microseismic activity, Localization., Indentation Fracture, Crack Mouth Opening Displacement (CMOD), Non-Destructive Technique (NDT), Acoustic Emission (AE)
相關次數: 點閱:241下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應隧道開挖安全化、自動化之趨勢,於岩覆較深、長大隧道之全斷面機械式鑽掘工法,允為當前隧道施工之重要選項之一。但其機械鑽刀與岩石破壞接觸之力學機制仍處渾濛,故常在工程實務上遭遇不易開挖、進度落後等困難。
    本研究乃依循上述動機,試圖以接觸破壞理論分析單一機械刃口與岩石承受貫壓之互制,乃至於破壞之演化機理。並藉由建置貫切破壞之實驗儀器設備,結合非破壞檢測之聲射技術,探求微觀尺度之微裂縫開裂行為,與巨觀尺度下主要裂縫初裂及延伸之關聯性,從而將理論與實驗作一比較分析,並歸納結論。
    其中之貫切試驗,別於傳統只能以力量或變形作為回饋訊號之試驗控制,研發可以用裂縫開口位移(Crack Mouth Opening Displacement, CMOD)控制,避免失穩開裂的情況下,求取尖峰強度前後之加載歷程,以分判峰前主要之延性破壞(塑性破壞)與峰後之脆性破壞特徵,作為破岩(Flagmentation)、可挖性(Cuttalility)等實務之設計參考。同時,設計可供模擬遠端應力(Far-field stress)之側向圍壓設備,以探討大地應力對開挖之影響。
    另一重要技術研發為聲射之非破壞檢測。結合AE對三種影響變數:(1)不同岩類,(2)側向圍壓,及(3)刃口接近弱面距離,進行系列之正向楔型貫切試驗。在固定楔型刀口為尖狀(Tip with no wear flat)及90°夾角下,有以下之結論:(a) AE產生微震事件(Seismic activity),得以反應微裂縫之發生,而其稍後可能因某處應力集中而產生之叢聚(Localization)等現象得到初步確認。同時,(b)模擬隧道平面問題之二維貫切行為產生之彈—塑性界面,亦經定性檢測而得。在其界面內為延性破壞發展;在其邊界上有最大張應力,由此界面處向邊界外側發展可能導致初始可能脆性破壞之位置。而(c) AE分布寬度,應可彰顯不同擬脆性岩類之材料特徵長度。此外,(d)針對水平側向圍壓之影響,研究得到最大貫切力(Fn)max及其相應之臨界貫切深度d* 均隨圍壓之增加而增大,但就其首次尖峰前之貫切壓力P* ( , 2a為其標稱接觸長度)而言,則變化不大;而脆性破壞之裂縫開展方向,可因微小之側向圍壓就有大幅變化。另外,(e)因刃口接近弱面距離之減少,最大標稱貫切力(Fn) max 隨之降低之趨勢亦經調查而得。而就貫切位置變化比, 之影響分析,得知在本研究使用之不同擬脆性材料下,分別有1/4到1/7的變化範圍。


    For a tunnel can be safe and automatic excavated, fully cross-area and mechanical boring method for deeper and longer tunnel, such as Tunnel Boring Method (TBM), should be important. Nevertheless, the lack of contact mechanism between mechanical boring tool and rock surface makes some difficulties during cutting process. For example, mechanical excavation in Shih-Lung sandstone did not work efficiently in Pinglin tunnel of Taiwan.
    As a result of the motive, this study attempt to depict how a single indentation works, and to understand it’s principal of fracture progress. Moreover, through setting up the instruments for indentation test in conjunction with nondestructive technique of Acoustic Emission, research into the relationship between micro-crack occurred and macro-fracture developed.
    Different from using force and displacement as traditional feedback signal to test, this study equipped apparatus of normal wedge indentation that can use crack mouth opening displacement (CMOD) as new feedback signal to conduct an entire loading history including post-peak behavior in stressed rock. To be reference as fragmentation and cuttability design, this study plan aims to characterize both ductile failure and brittle fracture. Meanwhile, the setup of confining system investigated the effect of lateral confinement on cutting process.
    In this research, establishing a nondestructive technique of acoustic emission (AE) is of importance as well. By operating a series of wedge indentation tests with a 90° wedge angle and wedge tip with no wear flat, AE technique was adapted to examine three key factors: (1) rock-like materials, (2) confinements, (3) indentation positions. Experimental results showed that microseismic activities of AE can be used to present the occurrence of microcracks, which may lead to localization or fracture eventually. The growth of ductile damage within plastic zone and a brittle tensile crack initiated on the elastoplastic interface were both measured qualitatively. Moreover, the distribution width of AE shall reveal the characteristic length of the material.
    Additionally, the influence of confinement on the maximum nominal indentation force/pressure and depth can be found: both required force and depth were increased with larger confinement as less considerable indentation pressure changed. On the other hand, the direction of crack propagation changes significantly with increasing confinement slightly. Furthermore, by changing indentation position forward to the edge of specimen results in a decrease of maximum nominal indentation force. At last, through changing indentation position with respect to different rock-like materials, the indentation position ratio, , was found a range of 1/4 to 1/7.

    目 錄 頁次 摘要I AbstractIV 目 錄VI 表目錄VIII 圖目錄IX 符號對照表XII 第一章、緒論1 1.1研究緣起1 1.2研究目的2 1.3研究範圍與方法3 1.4研究內容4 第二章、文獻回顧6 2.1非破壞檢測—聲射技術的發展6 2.2聲射理論10 2.2.1聲射基本原理10 2.2.2聲射定位法則12 2.3破壞模擬—貫切試驗之發展14 2.4貫切試驗相關理論17 2.4.1 孔洞擴展模式(Cavity Expansion Model, CEM)17 2.4.2線彈性破壞力學之破裂模式(Linear Elastic Fracture Model, LEFM)21 第三章、試驗架構33 3.1試驗材料34 3.2試驗儀器35 3.2.1破壞試驗部分:平面問題之貫切暨側圍壓系統36 3.2.2非破壞檢測部分:聲射訊號接收系統38 3.3試驗方法40 3.3.1試驗前之校正試驗41 3.3.2無側圍壓之貫切試驗45 3.3.3側向圍壓施加之貫切試驗50 第四章 試驗結果與分析73 4.1 試驗參數說明74 4.2 Fn—d之加載歷程與微裂縫發展之關係78 4.3 微觀微裂縫聲源位置與巨觀裂縫延伸之關聯性80 4.4 貫切區域形成彈—塑性界面發展之探討81 4.5 聲射位源之分布寬度反應材料之特徵長度82 4.6 側向圍壓之影響83 4.6.1 圍壓對大理岩試體之影響84 4.6.2 側向圍壓對蛇紋岩試體之影響85 4.7 變化貫切位置對貫切破壞之影響86 4.7.1 變化貫切位置對人造類岩破壞之影響88 4.7.2 貫切位置對無側壓之大理岩貫切破壞影響89 4.7.3 貫切位置對具側壓之大理岩試體貫切破壞之影響90 4.7.4 貫切位置對具圍壓之蛇紋岩貫切破壞之影響92 第五章 結論與建議121 5.1 結論121 5.1.1 非破壞檢測聲射研究之結論122 5.1.2 破壞性試驗貫切研究之結論124 5.2 建議與展望125 5.2.1非破壞檢測聲射研究之建議125 5.2.2 破壞性試驗之貫切研究之建議126 5.2.3 整合以非破壞檢測之聲射技術於破壞試驗而論127 參考文獻130 附錄135 A. 校正試驗相關照片與資料135 B. 側向圍壓系統設計圖139 C. 岩石切割及研磨機試體夾具設計圖144

    [1] 宋煥文,「三點彎曲作用下岩石破裂機制之研究」,國立台灣科技大學營
    建工程技術研究所碩士論文,1994年。
    [2] 李佳龍,「音洩定位法於岩石材料之應用」,國立成功大學資源工程學系
    碩碩士論文,2003年。
    [3] 林建志,「水泥砂漿材料強度參數之研究」,國立台北科技大學土木與防
    災研究所碩士論文,2003年。
    [4] 林楨中,陳彥翰「混凝土音洩特性探討」,營造工程音波監測防災監控
    技術研究,2004年。
    期中報告,行政院勞工委員會勞工安全衛生研究所,2004年。
    [5] 張仲佐,「非破壞性音洩凱撒效應對混凝土材料荷載歷史之檢核」,國立
    交通大學土木工程學系碩士論文,1995年。
    [6] 陳坤輝,「岩石直接剪力儀器試製之研究」,國立台灣科技大學營建工程
    技術學系碩士論文,1995年。
    [7] 陳家豪,「巴西試驗之音射定位分析研究」,岩盤工程研討會論文集,2004
    年。
    [8] 曾祥璣,「水渾爐石及矽灰水泥砂漿受壓過程中音洩訊號特性之研究」,
    國立交通大學土木工程學系碩士論文,1992年。
    [9] 黃兆龍,混凝土性質和行為,1995年,第六版。
    [10]黃兆龍,營建材料學,2002年,第七版。
    [11]楊斯然,「飛灰水泥砂漿之音洩訊號特性研究」,國立交通大學土木工程
    學系碩士論文,1991年。
    [12]廖志信,「岩石材料中音射發生源之位置探測研究」,國立成功大學土木
    工程研究所碩士論文,1993年。
    [13]蔡昇哲,陳立憲,黃國忠,陳堯中,「擬脆性岩材之微裂發軔與其峰後
    破壞之行為」,第十一屆大地工程學術研討會(已接受),2005年。
    [14]譚明德,「水泥砂漿受壓之訊號音減特性」,國立交通大學土木工程學系
    博士論文,1996年。
    [15]經濟部礦物局網站,http://www.mine.gov.tw,2005年。
    [16]Alehossein, H; Detournay, E.; Huang, H.(2000).
    "Analytical Model for the Indentation of Rocks by Blunt tools." Rock Mechanics and Rock Engineering, v 33, n 4, p 267-284.
    [17]American society for testing and materials (ASTM E610-82) (1999).
    "Standard Definitions of Terms Reating to Acoustic Emission."
    [18]American society for testing and materials (ASTM E976-84) (2000).
    "Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response."
    [19]Berthelot, J. M. (1993). "Frequency Analysis of Acoustic Emission
    Signals in Concrete." Journal of Acoustic Emission, v 11, n 1, p 11-18.
    [20]Brady,B. H. G. : Brown, E. T. (1993). Rock Mechanics for
    Underground Mining. Second edition.
    [21]Bray, Don. E. and McBride. (1992). "Acoustic Emission
    Technology." Nondestructive Testing Techniques, p 345-377, John Wiley & Sons Inc.
    [22]Chen L.H. (2002) "Failure of Rock under Normal Wedage
    Indentation.", Ph. D. Thesis, University of Minnesota.
    [23]Damjanac, B., and Detournay E. (1995). "Numerical Modelling of
    Normal Wedge Indentation in Rocks." In J. J. K. Daemon and R. A. Schultz (Eds.), Proc. 35th US Rock Mechanics Symposium, p 349-354. Balkema.
    [24]Das B.M. (1982), Fundamentals of Soil Dynamics.
    [25]Detournay, E., Fairhurst, C. and Labuz J. F. (1995). "A Model of
    Tensile Failure Initiation under an Indentor." In P. Rossmanith (Ed.), Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rock (MJFR-S), Vienna, Austria.
    [26]Detournay, E., Huang H., and Damjanac B. (2003). "Normal Wedge
    Indentation of Rocks by a Wedge-shaped tool 1: Theoretical Model. Int. J. Rock Mech. Min." Sci. & Geomech. Abstr.. Submitted.
    [27]Dornfeld, D. A. (1982). "Investigation of Machining, and Cutting
    Tool Wear and Chatter Using Acoustic Emission." Plenum Press, p 475-483.
    [28]Drescher, A. and Kang Y. (1987). "Kinematic Approach to Limit Load
    for Steady Penetration in Rigid-plastic Soils." Geotechnique, v 37, n 3, p 233-246.
    [29]Drouillard, T. F., (1996). "A History of Acoustic Emission."
    Journal of Acoustic Emission, v 14, n 1, p 1-34.
    [30]Erdogan F.; Kibler JJ. (1969) "Cylindrical and Spherical Shells
    with Cracks." Int J Fracture Mechanics, v 5, n 3, p 229-37.
    [31]Fowell, R.J. (1993) "The Mechanics of Rock cutting."
    Comprehensive Rock Engineering, v 4, p 155-176.
    [32]Fowler, T. J. (1979). "Acoustic Emission of Fiber Reinforced
    Plastics." Journal of the Technical Councils of ASCE: Proceedings
    of the ASCE, v 105, n 2, p 281-289.
    [33]Fowler, T. J. (1984). "Acoustic Emission Testing of Storage
    Tanks." Proceedings - American Petroleum Institute, Refining
    Department, v 63, p 283-286.
    [34]Hashida, T. (1990). "Fracture toughness determination of
    concrete by use of breakoff tester and acoustic emission technique" Cement and Concrete Research, v 20, n 5, p 687-701.
    [35]Hertz, H. H. (1896). Hertz's Miscellaneous papers. London:
    Macmillan.
    [36]Huang, H., B. Damjanac, and Detoumay E. (1998). "Normal Wedge
    Indentation in Rocks with lateral Confinement." Rock Mechanics and Rock Engineering, v 31, n 2, p 81-94.
    [37]James, D. L. (1989). "Acoustic Emission Investigation into some
    Concrete Construction Problems." Journal of Acoustic Emission, v 8, n 1-2, p s322-s325.World Meeting on Acoustic Enission.
    [38]James, D. R. (1971). "Relationship between Acoustic Emission and
    Dislocation Kinetics in Crystalline Solids." J Appl Phys, v 42, n 12, p 4685-4697.
    [39]Johnson, K. L. (1970). "The Correlation of Indentation
    Experiments. J. Mech." Phys. Solids, p115-126.
    [40]Johnson, K. L. (1987). "Contact Mechanics." Cambridge University
    Press.
    [41]Kaiser, J. (1953). "Undersuchungen uber das Aufrterten
    Geraucchen beim Zevgersuch." Ph.D Thesis. Technische Hochschule, Munich.
    [42]Landis, C. (1991/1992). "Automated Determination of first P-wave
    Arrival and Acoustic Emission Source Locttion." Journal of Acoustic Emission, v 10, n 1-2, p s97-s103.
    [43]Lawn, B. and Evans A. (1977). "A model for Crack Initiation in
    Elastic/plastic Indentation Field." J. Mater, Sci., v 12, p 2195-2199.
    [44]Lawn, B. and Marshall D. (1979). "Hardness, Toughness, and
    Brittleness: an Bndentation Analysis. J. Amer." Ceramic Society, v 62, n 7, p 347-350.
    [45]Lawn, B. and Swain M. (1975). "Microfracture Beneath the Point
    Indentation in Brittle Solids." J. Mater. Sci., p 113-122.
    [46]Lawn, B. and Wilshaw R. (1975). "Review indentation fracture:
    Principles and Applications." J. Mater. Sci., v 10, p 1049-1081.
    [47]Lyndon, A.; Schofield, A. N. (1978). "Centrifugal Model Tests of
    the Lodalen Landslide." Canadian Geotechnical Journal, v 15, n 1, p 1-13.
    [48]Maji, A.K. (1994). "Acoustic emissions from reinforced concrete"
    Experimental Mechanics, v 34, n 4, p 379-388.
    [49]Marsh, D. (1964). "Plastic Flow in Glass. Proc. Roy." Soc. London, Ser. A A279, p 420-435.
    [50]Mishnaevsky(Jr.), L. L. (1993). "A Brief Review of Soviet
    Theoretical Approaches to Dynamic Rock Failure. Int. J. Rock Mech." Min. Sci. & Geomech. Abstr. v 30, n 6, p 663-668.
    [51]Mishnaevsky(Jr.), L. L. (1995). "Physical Mechanisms of Hard Rock
    Fragmentation under Mechanical Loading: A review. Int. J. Rock Mech." Min. Sci. & Geomech. Abstr., v 32, n 8, p 763-766.
    [52]MTS-810 User's Manual.
    [53]Ohtsu, M. (1982) "Acoustic Emission Characteristics of Concrete
    and Fundamental Mechanisms.", Ph. D. Thesis, Kyoto University.
    [54]Ohtsu, M. (1987). "Acoustic Emission Characteristics in Concrete
    and Diagnostic Applications. "Journal of Acoustic Emission, v 6, n 2, p 99-108.
    [55]Ohtsu, M. (1988). "Source Inversion of Acoustic Emission
    Waveform." Structural Eng./Earthquake Eng, v 5, n 2, p 275s-283s.
    [56]Ohtsu, M. (1989). "Inverse Inspection by Acoustic Emission Based
    on the Boundary Element Formulation." American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, v 177, p 201-205.
    [57]Ohtsu, M. (1993). "Assessment of Concrete Deterioration using
    Plastic Analysis and Acoustic Emission Technique." Journal of Acoustic Emission, v 11, n 4, p 99-108.
    [58]Ponton, C.B. (1989). "Vickers Indentation Fracture Toughness
    Test part 2 Application and Critical Evaluation of Standardised Indentation Toughness equations" Materials Science and Technology, v 5, n 10, p 961-976.
    [59]Reymond, M. C.(1983). "Comporetment des Carriers Apres Tirs de
    Mines.(Behavior of Quarries after a Blast.)" Bulletin of the International Association of Engineering Geology, n 26-27, p 295-298.
    [60]Robert, J. L. (1982). "Survey of Structures by using Acoustic
    Emission Monitoring." Reports of the Working Commissions (International Association for Bridge and Structural Engineerin, v 39, p 33-38.
    [61]Shah, K. R.(1995). "Stress dependence of source mechanisms from
    acoustic emission" Proceedings of Engineering Mechanics, v 2, p 1151-1154.
    [62]Shiotani, T. (1999). "Acoustic emission characteristics of
    concrete-piles" Construction and Building Materials, v 13, n 1-2, Jun, p 73-85.
    [63]Spanner, J. C., Brown, A. Hay, D.R., Notvest, K. and Pollock, A.
    (1987). "Fundationals of Acoustic Emission Testing." Nondestructive Testing Handbook, 2nd Ed., v 5, p 11-44.
    [64]Timoshenko, S. P. and Goodier. J. N. "Theory of Elasticity (3rd
    ed.)." New York, NY: McGraw-Hm.
    [65]Whittaker B. N.; Singh R. N., and Gexin Sun (1992). Rock Fracture
    Mechanics-Principles, Design and Applications.
    [66]Wu, K. (2001). "Study of the influence of aggregate size
    distribution on mechanical properties of concrete by acoustic emission technique" Cement and Concrete Research, v 31, n 6, p 919-923.
    [67]Yuyama, S. (1994). "Acoustic emission evaluation of structural
    integrity in repaired reinforced concrete beams" Materials Evaluation, v 52, n 1, p 88-90.
    [68]Yuyama, S. (1999). "Quantitative analysis of fracture process in
    RC column foundation by moment tensor analysis of acoustic emission." Construction and Building Materials, v 13, n 1-2, Jun, 1999, p 87-97.
    [69]Zietlow, W.K. (Univ of Minnesota); Labuz, J.F. (1998).
    "Measurement of the Intrinsic Process Zone in Rock using Acoustic Emission." International Journal of Rock Mechanics and Mining Sciences, v 35, n 3, p 291-299.

    無法下載圖示 全文公開日期 2006/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE