簡易檢索 / 詳目顯示

研究生: 陳韋志
Wei-Chih Chen
論文名稱: 應用同步化非破壞檢測技術研探擬脆岩材受液體驅動破壞之行為
Application of Coupled Nondestructive Technique on Fluid-driven Damage of Quasi-brittle Rock
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 黃燦輝
none
林世聰
none
壽克堅
none
林宏達
none
陳立憲
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 166
中文關鍵詞: 液驅破壞聲射法斑點剪切干涉術完整加載歷程叢聚面外位移
外文關鍵詞: Fluid-driven fracture, Acoustic emission (AE), Speckle-shearing interferometry, Complete loading history, Localization, Out-of-plane displacement.
相關次數: 點閱:305下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大地工程如壓力隧道、地下水庫、高岩覆之節理補強灌漿;工程地質如火成岩脈(dike)形成機理;能、資源之地下或經濟開發鑽採、放射廢料地下最終貯存等重要之大地課題,皆與固態岩材受內在液驅壓力引致開裂過程之力學機制相關,為探究此一議題,本研究自行建置複合式、微觀式之非破壞檢技術,結合聲射法(Acoustic Emission, AE)與斑點剪切干涉術(Speckle-shearing interferometry, SSI)於液驅式岩石破裂(Fluid-driven fracture)行為探討,進行實驗與理論分析之研究,據以進一步知悉液驅式岩石破裂特徵行為之巨、微觀破壞演化機理及其相關重要影響參數。
    研究上,液驅加載儀設之建立,以環狀應變計為回授訊號控制液體加載速率,可穩定裂縫之開展,藉此獲得完整之加載歷程。試驗材料以人造水泥砂漿為擬脆岩材,並以試體材料之顆粒大小、滲透性與加載液體黏滯度為探討因子。實驗結果於巨觀行為顯示,由完整之加載曲線可求得液驅應力場下之峰前勁度、尖峰強度與峰後之變形行為;而尖峰強度與峰後變形速率將隨材料顆粒越小、滲透性越低與液體黏滯度越高而越高。
    在微觀尺度下,聲射事件(AE event)叢聚(Localization)時機集中於峰後加載比99~95%之間,而第一條干涉條紋則產生在加載比99~100%處,顯示脆性材料在液驅破壞均向應力場作用下,破壞發生急遽,於峰前無明顯破壞徵兆顯現。比對材料內部聲射事件與試體外部之面外位移,可探求裂縫尖端位置,並估算裂縫開口寬度,據以與理論解析比對。


    Concerning the crucial geo-mechanics projects such as pressure tunnel, grouting injection for jointed rock, geological formation of dike, exploitation of natural resources, and underground nuclear waste repository etc., different types of fluid-driven fracture are of the world-wide interests. This study reviewed the theoretical fluid-driven fracture model under the microscopic view. By establishing novel setup consisted of fluid-driven fracturing apparatus with coupling nondestructive techniques of acoustic emission (AE) and speckle-shearing interferometry (SSI), experimental examination will be conducted to identify this conceptual model.
    In this research, a new loading instrument was designed to supply the fluid-driven motion, which can adjust the injection rate automatically according to the feedback from the extensometer. The stable crack propagation within material therefore was controlled and complete loading history can also be obtained. The specimens were made of cement mortar sand as a quasi-brittle rock. Some effects of factors such as grain size, permeability in solids; and viscosity in fluids were also investigated in this study.
    Test results in macroscopic view show that the stiffness, peak strength, and the post-peak behavior can be investigate from complete loading curve and the peak strength will increase with decreasing grain size and permeability and increasing viscosity. In microscopic view, the localization of AE events and first fringe occurrence was found ranging between 99% to 95% at post peak stage and 99% to 100% at pre peak stage, respectively. This phenomenon shows that the fracture development of fluid-driven in brittle material will occur rapidly when load pressure reached the peak value. Coupled analysis of the AE event distribution and measured out-of-plane displacement can be used to trace the position of crack tip and estimate the crack opening width. The obtained crack opening width from experiment was used to compare with the one from theoretical solution.

    論 文 摘 要 Abstract 目錄 表目錄 圖目錄 符號對照表 第一章 緒論 1.1 研究動機與目的 1.2 研究範圍與方法 1.3 論文內容 第二章 文獻回顧 2.1 液驅破壞 2.1.1 液驅破壞模式 2.1.2 液驅破壞室內試驗之發展 2.2 聲學非破壞檢測技術–聲射法 2.2.1 聲射定位準則 2.2.2 聲射定位原理 2.3 光學非破壞檢測技術–斑點剪切干涉術 2.3.1 光測力學基本理論 2.3.2 斑點效應 2.3.3 斑點剪切干涉術之沿革與應用 2.3.4 量測原理 第三章 液驅破壞理論解析 3.1 問題描述與假設條件 3.2 量綱分析 3.3 韌度尺度下之解析 3.4 黏滯度尺度下之解析 第四章 試驗規劃 4.1 試體與流體整備 4.1.1材料選配與試體製作 4.1.2 試驗用液體 4.2 液驅破壞儀設 4.2.1 液驅加載設備 4.2.2 止水套管 4.2.3 環狀應變計 4.2.4 操作系統 4.3 聲射訊號擷系統 4.4 斑點剪切干涉術儀器 4.5 實驗施作流程 4.5.1 實驗設置 4.5.2 實驗進行與結束 第五章 實驗結果與分析 5.1 液驅破壞之巨觀行為 5.1.1 完整加載歷程 5.1.2 砂顆粒大小之影響 5.1.3 添加飛灰之影響 5.1.4 液體黏滯度之影響 5.2 液驅破壞之微觀行為 5.2.1 微震裂源之演化 5.2.2 干涉條紋之演化 5.2.3 面外位移求算 5.2.4 耦合聲光結果研析 5.3 與理論解析比對 第六章 結論與建議 6.1 結論 6.1.1 巨觀加載行為 6.1.2 微觀破壞演化 6.1.3 實驗與理論比對結果 6.2 建議 6.2.1 試驗材料 6.2.2 破壞性液驅試驗設備 6.2.3 非破壞檢測技術 參考文獻 附錄A 應力與時間關係之加載歷時曲線 附錄B 應力與變形關係之加載曲線 附錄C 聲射事件演化時間圖系 附錄D 聲射事件演化空間圖系 附錄E 干涉條紋演化圖

    [1]Abe, H., Keer, L., & Mura, T. (1976). Growth rate of a penny‐shaped crack in hydraulic fracturing of rocks. Journal of Geophysical Research, 81(35), 6292-6298.
    [2]Batchelor, G. K. (2000). An introduction to fluid dynamics: Cambridge university press.
    [3]Behrmann, L. A., & Elbel, J. L. (1991). Effect of perforations on fracture initiation. Journal of Petroleum Technology, 43(05), 608-615.
    [4]Bolzon, G., & Cocchetti, G. (2003). Direct assessment of structural resistance against pressurized fracture. International Journal for Numerical and Analytical Methods in Geomechanics, 27(5), 353-378. doi: 10.1002/nag.276
    [5]Bray, D. E., & McBride, D. (1992). Acoustic emission technology. John Wiley & Sons Ins., New York, 345-377.
    [6]Bunger, A. P., Detournay, E., & Jeffrey, R. G. (2005). Crack tip behavior in near-surface fluid-driven fracture experiments. Comptes Rendus Mecanique, 333(4), 299-304. doi: 10.1016/j.crme.2005.01.004
    [7]Bunger, A. P., Gordeliy, E., & Detournay, E. (2013). Comparison between laboratory experiments and coupled simulations of saucer-shaped hydraulic fractures in homogeneous brittle-elastic solids. Journal of the Mechanics and Physics of Solids, 61(7), 1636-1654. doi: 10.1016/j.jmps.2013.01.005
    [8]Butters, J. N., & Leendertz, J. A. (1971). Holographic and video techniques applied to engineering measurement. Measurement and control, 4(12), 349-354.
    [9]Carpinteri, A., Corrado, M., & Lacidogna, G. (2013). Heterogeneous materials in compression: Correlations between absorbed, released and acoustic emission energies. Engineering Failure Analysis, 33, 236-250. doi: 10.1016/j.engfailanal.2013.05.016
    [10]Carpinteri, A., Lacidogna, G., Niccolini, G., & Puzzi, S. (2007). Critical defect size distributions in concrete structures detected by the acoustic emission technique. Meccanica, 43(3), 349-363. doi: 10.1007/s11012-007-9101-7
    [11]Chen, L. H. (2001). Failure of rock under normal wedge indentation. Ph. D. Thesis, University of Minnesota, Minnesota.
    [12]Cheung, L. S., & Haimson, B. C. (1989). Laboratory study of hydraulic fracturing pressure data—How valid is their conventional interpretation? International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(6), 595-604.
    [13]Detournay, E. (2004). Propagation regimes of fluid-driven fractures in impermeable rocks. International Journal of Geomechanics, 4(1), 35-45.
    [14]Doyle, J. L., Wood, G. R., & Bondurant, P. D. (1993). Using laser-based profilometry to locate and measure corrosion fatigue cracking in boiler tubes. Materials evaluation, 51(5), 556-560.
    [15]ElBatanouny, M. K., Larosche, A., Mazzoleni, P., Ziehl, P. H., Matta, F., & Zappa, E. (2012). Identification of Cracking Mechanisms in Scaled FRP Reinforced Concrete Beams using Acoustic Emission. Experimental Mechanics, 54(1), 69-82. doi: 10.1007/s11340-012-9692-3
    [16]Fortin, J., Stanchits, S., Dresen, G., & Gueguen, Y. (2006). Acoustic emission and velocities associated with the formation of compaction bands in sandstone. Journal of Geophysical Research, 111(B10). doi: 10.1029/2005jb003854
    [17]Fowler, T. J. (1979). Acoustic emission of fiber reinforced plastics. Journal of the Technical Councils of ASCE, 105(2), 281-289.
    [18]Gabor, D. (1948). A new microscopic principle. Nature, 161(4098), 777-778.
    [19]Garagash, D., & Detournay, E. (2000). The tip region of a fluid-driven fracture in an elastic medium. Journal of applied mechanics, 67(1), 183-192.
    [20]Garagash, D. I. (2006). Plane-strain propagation of a fluid-driven fracture during injection and shut-in: Asymptotics of large toughness. Engineering Fracture Mechanics, 73(4), 456-481. doi: 10.1016/j.engfracmech.2005.07.012
    [21]Garagash, D. I., & Detournay, E. (2005). Plane-Strain Propagation of a Fluid-Driven Fracture: Small Toughness Solution. Journal of applied mechanics, 72(6), 916. doi: 10.1115/1.2047596
    [22]Geertsma, J., & De Klerk, F. (1969). A rapid method of predicting width and extent of hydraulically induced fractures. Journal of Petroleum Technology, 21(12), 1,571-571,581.
    [23]Goodman, R. E. (1989). Introduction to rock mechanics (2nd ed). John Wiley & Sons, New York.
    [24]Guo, F., Morgenstern, N. R., & Scott, J. D. (1993). An experimental investigation into hydraulic fracture propagation—Part 1. Experimental facilities. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(3), 177-188. doi: http://dx.doi.org/10.1016/0148-9062(93)92722-3
    [25]Haimson, B. C., & Fairhurst, C. (1969). In-situ stress determination at great depth by means of hydraulic fracturing. Paper presented at the The 11th US Symposium on Rock Mechanics (USRMS).
    [26]Haimson, B. C., & Zhao, Z. (1991). Effect of borehole size and pressurization rate on hydraulic fracturing breakdown pressure. Paper presented at the The 32nd US Symposium on Rock Mechanics (USRMS).
    [27]Hopkins, H. H., & Tiziani, H. J. (1970). Speckling in diffraction patterns and optical images formed with the laser. Paper presented at the Comptes rendus du Symposium International d'Holographie, Besancon.
    [28]Hubbert, M. K., & Willis, D. G. (1957). Mechanics of hydraulic fracturing.
    [29]Hung, Y. Y. (1999). Applications of digital shearography for testing of composite structures. Composites Part B: Engineering, 30(7), 765-773.
    [30]Hung, Y. Y., Luo, W. D., Lin, L., & Shang, H. M. (2000). Evaluating the soundness of bonding using shearography. Composite structures, 50(4), 353-362.
    [31]Ishida, T. (2001). Acoustic emission monitoring of hydraulic fracturing in laboratory and field. Construction and Building Materials, 15(5–6), 283-295. doi: http://dx.doi.org/10.1016/S0950-0618(00)00077-5
    [32]Ito, T., & Hayashi, K. (1991). Physical background to the breakdown pressure in hydraulic fracturing tectonic stress measurements. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 28(4), 285-293. doi: http://dx.doi.org/10.1016/0148-9062(91)90595-D
    [33]Kaiser, J. (1953). Undersuchungen Uber Das Aufrterten Geraucchen Beim Zevgersuch. Ph. D Thesis. Technische Hochschule, Munich.
    [34]Khristianovic, S., & Zheltov, Y. (1955). Formation of vertical fractures by means of highly viscous fluids. Paper presented at the Proceedings of the 4th world petroleum congress, Rome.
    [35]Labuz, J. F., Shah, S. P., & Dowding, C. H. (1987). The fracture process zone in granite: evidence and effect. Paper presented at the International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.
    [36]Leendertz, J. A., & Butters, J. N. (1973). An image-shearing speckle-pattern interferometer for measuring bending moments. Journal of Physics E: Scientific Instruments, 6(11), 1107.
    [37]Lei, X., Kusunose, K., Rao, M. V. M. S., Nishizawa, O., & Satoh, T. (2000). Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. Journal of Geophysical Research, 105(B3), 6127. doi: 10.1029/1999jb900385
    [38]Leith, E. N., & Upatnieks, J. (1962). Reconstructed wavefronts and communication theory. JOSA, 52(10), 1123-1128.
    [39]Lister, J. R., & Kerr, R. C. (1991). Fluid‐mechanical models of crack propagation and their application to magma transport in dykes. Journal of Geophysical Research: Solid Earth (1978–2012), 96(B6), 10049-10077.
    [40]Lo, Y.-L., Sung, P.-H., Wang, H.-J., & Chen, L.-W. (2000). Pressure vessel wall thinning detection using multiple pairs of fiber Bragg gratings for unbalanced strain measurements. Journal of nondestructive evaluation, 19(3), 105-113.
    [41]Mahrer, K. D. (1999). A review and perspective on far-field hydraulic fracture geometry studies. Journal of Petroleum Science and Engineering, 24(1), 13-28.
    [42]Majer, E. L., & Doe, T. W. (1986). Studying hydrofractures by high frequency seismic monitoring. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 23(3), 185-199. doi: http://dx.doi.org/10.1016/0148-9062(86)90965-4
    [43]Maji, A. K. (1994). Acoustic Emissions from Reinforced Concrete. Experimental Techniques, 34(4), 379-388.
    [44]Matsunaga, I., Kobayashi, H., Sasaki, S., & Ishida, T. (1993). Studying hydraulic fracturing mechanism by laboratory experiments with acoustic emission monitoring. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 909-912. doi: http://dx.doi.org/10.1016/0148-9062(93)90043-D
    [45]Ohtsu, M. (1987). Acoustic emission characteristics in concrete and diagnostic applications. Journal of acoustic emission, 6(2), 99-108.
    [46]Perkins, T. K., & Kern, L. R. (1961). Widths of hydraulic fractures. Journal of Petroleum Technology, 13(09), 937-949.
    [47]Rice, J. R. (1979). The mechanics of earthquake rupture: Division of Engineering, Brown University.
    [48]Rubin, A. M. (1995). Propagation of magma-filled cracks. Annual Review of Earth and Planetary Sciences, 23, 287-336.
    [49]Rummel, F. (1987). Fracture mechanics approach to hydraulic fracturing stress measurements. Fracture mechanics of rock, 6, 217-239.
    [50]Rummel, F., & Winter, R. B. (1983). Application of laboratory fracture mechanics data to hydraulic fracturing field tests Hydraulic fracturing and geothermal energy (pp. 493-501): Springer.
    [51]Shah, K. R., & Labuz, J. F. (1995). Damage mechanisms in stressed rock from acoustic emission. Journal of Geophysical Research: Solid Earth (1978–2012), 100(B8), 15527-15539.
    [52]Sim, C. W., Chau, F. S., & Toh, S. L. (1995). Vibration analysis and non-destructive testing with real-time shearography. Optics & Laser Technology, 27(1), 45-49.
    [53]Slowik, V., & Saouma, V. E. (2000). Water pressure in propagating concrete cracks. Journal of Structural Engineering, 126(2), 235-242.
    [54]Soden, R. A. J., & Dewhurst, R. J. (1999). An integrated liquid crystal phase modulator for speckle shearing interferometry. Optics and lasers in engineering, 31(2), 123-134.
    [55]Spence, D. A., & Sharp, P. (1985). Self-similar solutions for elastohydrodynamic cavity flow. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1819), 289-313.
    [56]Sun, R. J. (1969). Theoretical size of hydraulically induced horizontal fractures and corresponding surface uplift in an idealized medium. Journal of Geophysical Research, 74(25), 5995-6011.
    [57]Timoshenko, S., & Goodier, J. (1970). Theory of Elasticity, McGraw-Hill, New York.
    [58]Wu, R. (2006). Some fundamental mechanisms of hydraulic fracturing. Georgia Institute of Technology.
    [59]Zoback, M. D., Rummel, F., Jung, R., & Raleigh, C. B. (1977). Laboratory hydraulic fracturing experiments in intact and pre-fractured rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 14(2), 49-58. doi: http://dx.doi.org/10.1016/0148-9062(77)90196-6
    [60]林世聰(2009),光電精密量測,上課講義,國立台北科技大學光電工程系,台北。
    [61]林雍勝(2006),岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化,碩士論文,國立台灣科技大學營建工程系,台北。
    [62]黃國忠(2008),應用聲射法與分離元素法探討擬脆性岩材破壞機理之研究,博士論文,國立台灣科技大學營建工程系,台北。

    QR CODE