簡易檢索 / 詳目顯示

研究生: 林國楨
GUO-ZHEN LIN
論文名稱: 以聲光耦合技術與分離元素法研探類岩於斜剪試驗之破壞演化
Using Acousto-Optic Coupling Technology and Distinct Element to Investigate the Fracture Evolution of Rock-like Materials during Inclined Shear Tests
指導教授: 陳堯中
Yao-chung Chen
口試委員: 黃燦輝
none
林銘郎
none
陳立憲
none
歐章煜
none
陳志南
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 159
中文關鍵詞: 斜剪試驗儀水泥砂漿剪角預裂聲射法電子斑紋干涉術叢聚初裂裂衍雙剪裂帶分離元素法
外文關鍵詞: distinct element method (DEM), particle flow code (PFC)
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去對於岩石力學與工程之研究,多於巨觀行為之探討,對不同應力路徑下,微觀裂隙之生、衍等破壞特徵則較少觸及,究其因除受限於傳統力學試驗設備外,欠缺適當之微觀非破壞檢測技術亦為原因。
    因此本研究以同步化聲、光非破壞檢測技術應用於研究團隊研發之斜剪試驗儀,調整水泥砂漿配比以模擬中等強度之類岩材料,研探岩材受剪行為下,其剪角(客體)與預裂(主體)之影響,並以分離元素法軟體PFC2D進行數值分析,用以適切探討類岩在斜剪試驗下之力學行為,冀能研探從微觀至巨觀之破壞機制,作為科學與工程應用之佐參。
    在平面應力之受剪狀態下,探討下列變數之影響:(1)斜剪角度(β=50∼75°)、(2)預裂之幾何形狀(試體中央無預裂、扁長型與圓孔型預裂),以開口位移控制(COD)求完整加載歷程。並可藉由聲射(AE)技術研探岩材內部受剪產生微震裂源(microseismic locations)之發生時機與空間分佈,與電子斑紋干涉術(ESPI)所偵測之岩材外部因受剪變形引致之干涉影像同步比對,以研探類岩材料之三項破壞演化特徵:叢聚(localization)、初裂(initiation of crack)與裂衍(crack propagation)。
    試驗結果顯示,受剪勁度與剪力強度隨剪角增大而降低,且其破壞之裂衍角有方向改變之趨勢乃至其值亦隨之增大,即產生之裂縫由相對高正向應力(β = 50°)之剪力裂縫,漸變成相對低正向應力下允許膨脹(β = 60°∼75°)之張力裂縫。由初裂後之微震裂源分佈可求得材料之剪裂特徵寬度,發現特徵寬度隨剪角增加而增加。
    至於預裂對受剪行為之影響,圓孔型預裂試體中,預裂處有明顯應力集中的現象產生,其裂衍角會隨著剪角β增加而上升。而對AE事件分佈之特徵寬度λd之評估中,在無預裂狀態下隨著β的增加,其λd亦隨之增加;在相同剪角下,圓孔型預裂孔之λd大於無預裂試體。
    利用聲射法觀察材料微裂之演化,研析其叢聚之發生時機與其位置,再與電子斑紋干涉術所觀察到之初裂與裂衍位置比對,發現兩者所觀察到之破壞趨勢約略一致。經由試驗與數值分析進行破壞機制之分析比對與驗證,初步確立整體彈性、塑性及破壞歷程之演化行為,未來可進一步探討相關岩體或節理之受剪行為。


    Most of the experimental studies in rock mechanics and engineering were conducted in the viewpoint of macro-scale, only a few researches focused on the microscopic fracture characteristics such as crack initiation and propagation in stressed rock due to the limitation of nondestructive techniques.This experimental study, therefore, aims at the synchronization of both acoustic and optical nondestructive techniques to investigate the effects of shear angle and pre-existing crack on rock-like material (mortar) under inclined shear tests.
    Based on the plane stress condition of shearing specimen under COD (crack opening displacement) control, a series of experimental tests were performed to obtain entire loading curves by varying: (1) the inclined angle, ranging from 50 to 75°, and (2) the material geometry, with or without pre-existing crack (penny and circular shapes in the middle of specimen). In conjunction of both AE (acoustic emission) which was to detect the micro-seismic activities within the rock, and ESPI (electronic speckle pattern interferometry) which was to detect the deformation field on the rock surface, the evolution of fracture could be examined during the shearing process.
    The results show that three fracturing characterizations have been verified corresponding to the inclined shear test: localization, crack initiation and propagation.
    Test results showed that both shear stiffness and peak shear stress decreased with increasing inclination angle β, and the crack deviation angle would also change direction and increase in value. The crack characteristic was shear fracture for β = 50 test with relatively high normal stress condition and changed to be tensile fracture for β > 50 test with relatively low normal stress condition. The intrinsic width of macro-crack could be evaluated by analyzing the distribution of microseismic activities after crack initiation. It is found that the intrinsic width increases with increasing inclination angle.
    Furthermore, experiments without pre-existing crack show that the larger the shear angle, the wider the width of the AE events, λd. Experiments with pre-existing circular crack display the wider λd compared with the one without pre-existing crack.
    AE can be used to detect the localization while ESPI can be used to verify crack initiation and propagation. Both results were compared with each other and depicted a good agreement. By synchronizing both AE and ESPI techniques, it could be used to examine the shearing mechanism in rock mass and jointed rock as well.

    論 文 摘 要 I Abstract III 誌 謝 V 目 錄 VII 表 目 錄 XII 圖 目 錄 XIII 符號對照表 XVII 第一章、緒 論 1 1.1 研究背景及動機 1 1.2 研究目的 2 1.3 研究範圍與方法 3 1.4 論文內容 5 第二章、文獻回顧 6 2.1 斜剪試驗之沿革與創新 6 2.2 岩石受剪行為之破壞演化模式 8 2.3 剪力試驗之破壞模式 9 2.3.1 岩石延性與脆性破壞理論 9 2.3.2 岩材強度與變形關係 12 2.3.3 剪力試驗破壞型態 13 2.3.4 剪脹角之定義與求算 15 2.4 線彈性破壞力學沿革與發展 19 2.4.1 觀念緣起 19 2.4.2 理論發展 20 2.4.3 Griffith能量平衡理論 20 2.4.4 應力強度因子與破壞韌度 23 2.5 非破壞檢測-聲射技術沿革與應用 24 2.5.1 聲射定位原理 25 2.5.2 聲射定位準則 28 2.6 非破壞檢測-電子斑紋干涉術沿革與應用 31 2.6.1 光測力學基本理論 31 2.6.2 電子斑紋干涉術 32 2.6.3 斑點效應特性 34 2.6.4 面內位移系統 34 2.7 分離元素法相關研究 37 第三章、研究方法 39 3.1 試驗材料選配及試體製作 40 3.1.1 試驗材料 40 3.1.2 試體製作流程 42 3.2 試驗設備 45 3.2.1 斜剪試驗設備 45 3.2.2 聲射法(AE)設備 49 3.2.3 電子斑紋干涉技術(ESPI)儀器 51 3.3 試驗方法與流程 55 3.3.1 校正檢驗 55 3.3.2 斜剪試驗與同步化聲、光檢測之應用 60 3.4 PFC2D程式之理論基礎 64 3.4.1 基本假設與運算邏輯 64 3.4.2 力與位移關係 66 3.4.3 運動定律 70 3.4.4 微觀參數 71 第四章、試驗結果與分析 74 4.1 試驗參數與力學性質參數說明 74 4.1.1 試驗參數說明 74 4.1.2 斜剪儀求算巨觀強度參數之驗證 76 4.1.3 基本力學試驗及結果 78 4.1.4 斜剪試驗之規劃與執行 80 4.2 剪角與預裂對巨觀破壞行為之影響 82 4.2.1 剪角對類岩材料斜剪加載歷程之影響 82 4.2.2 預裂對類岩材料之斜剪加載歷程之影響 84 4.2.3 剪角於類岩之裂衍特徵 86 4.2.4 斜剪試驗之剪脹角求算 91 4.3 剪角與預裂對微觀破壞行為之影響 93 4.3.1 剪角對微震裂源與加載歷程之關係 94 4.3.2 預裂對微震裂源與加載歷程之關係 98 4.3.3 聲射位源之分佈帶寬 100 4.4 剪角與預裂對微觀裂隙演化之影響 103 4.4.1 相同剪角時有無預裂之空間演化 103 4.4.2 剪裂帶之裂衍特徵 106 4.4.3 ESPI檢測裂衍之時間演化 108 4.5 複合式非破壞耦合檢測之成果研析 109 4.5.1 巨觀裂縫與非破壞聲光檢測耦合之比對 110 4.5.2 微震裂源對初裂時機之比對 111 第五章、數值模擬架構與分析結果 113 5.1 數值模型之建構 113 5.1.1 試體之建模 113 5.1.2 微觀參數選用依據 116 5.2 數值模擬分析之結果 121 5.2.1 單壓試驗破壞模式之檢核 121 5.2.2 斜剪試驗破壞模式之模擬結果 122 5.2.3 斜剪破壞之應力場狀態 130 第六章、結論與建議 113 6.1 結論 137 6.1.1不同應力路徑試驗結果與分析 137 6.1.2數值分析之模擬結果 140 6.2 建議 141 6.2.1 試驗材料之建議 141 6.2.2 破壞性試驗之建議 141 6.2.3 非破壞檢測之建議 142 6.2.4 數值分析之建議 142 參考文獻 143 附 錄A :校正實驗及相關資料與照片 151 附 錄B : 委員意見回覆表 156 作者簡介 158

    [1] 李宏輝,「砂岩力學行為之微觀機制-以個別元素法探討」,博士論文,國立臺灣大學土木工程研究所,台北 (2008)。
    [2] 李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,碩士論文,國立台北科技大學土木工程系,台北 (2006)。
    [3] 李佳龍,「音洩定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,台南 (2003)。
    [4] 呂榮華,「以單顆粒勁度探討卵礫石層之抗剪強度」,碩士論文,國立中興大學土木工程研究所,台中(1999)。
    [5] 林佑珊,「以光學干涉研探類岩粒徑大小與形狀於壓、剪過程破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北(2010)
    [6] 林郁修,「以PFC3D模擬岩石貫切破壞試驗之模擬分析」,碩士論文,國立台北科技大學土木工程學系,台北(2007)
    [7] 林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2006)。
    [8] 胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀貫切之破壞機制」,碩士論文,國立台北科技大學土木工程系,台北 (2007)。
    [9] 陳家豪,「巴西試驗之音射定位分析研究」,岩盤工程研討會論文集 (2004)。
    [10] 徐紳翔,「應用非破壞聲射法於岩材受斜向剪切試驗之破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2011)。
    [11] 洪如江,初等工程地質學大綱,第四版一刷,地工技術研究發展基金會,台北市,第41-61頁 (2007)。
    [12] 洪啟德,「岩石之模擬材料與其直接剪力破壞模式之研究」,碩士論文,國立台灣大學土木工程學系,台北 (1989)。
    [13] 唐昭榮,「利用Distinct-Element Method(DEM)探討集集地震所誘發之草嶺山崩」,中國地質學會九十四年年會學術研討會,(2005)。
    [14] 彭國維,「以聲射技術研探類岩粒徑大小與形狀於壓、剪過程破壞特徵」,碩士論文,國立台灣科技大學營建工程系,台北(2010)
    [15] 張家銓,「分離元素法於擬脆性岩材微觀破裂機制之初探」,碩士論文,國立台北科技大學土木工程學系,台北(2007)。
    [16] 張健峰,「黑色片岩預應力室內試驗推估方法之研究」,碩士論文,國立成功大學土木工程系,台南 (2007)。
    [17] 楊文欣,「非破壞性聲光同步技術驗證類岩斜剪試驗之剪角影響與預裂效應」,碩士論文,國立台灣科技大學營建工程系,台北(2010)
    [18] 楊長義,模擬規則節理面岩體強度與變形性之研究,博士論文,國立台灣大學土木工程研究所,台北 (1992)。
    [19] 廖志信,「岩石材料中音射發生源之位置探測研究」,碩士論文,國立成功大學土木工程系,台南 (1993)。
    [20] 劉信良,「複合式非破壞檢測於類岩斜剪過程之巨微觀破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
    [21] 劉峵瑋,「以非破壞耦合試驗研探類岩材料受楔形貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北 (2007)。
    [22] 蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,碩士論文,國立台灣科技大學營建工程系,台北 (2005)。
    [23] 應傳智,「人工軟弱岩石之研究」,碩士論文,國立台灣大學土木工程系,台北(1995)。
    [24] 魏德禎,「岩石斜向剪切試驗暨其聲光非破壞檢測之佐驗」碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
    [25] Barton, N.R., "A Relationship Between Joint Roughness and Joint Shear Strength", Symposium of the International Society for Rock Mechanics, pp.1-8 (1971).
    [26] Berthelot, J. M., "Frequency Analysis of Acoustic Emission Signals in Concrete," Journal of Acoustic Emission, Vol. 11, No. 1, pp. 11-18 (1993).
    [27] Biolzi, L., Pedala, S. and Labuz, J. F., "Mechanical characterization of natural building stone," Degradation of Natural Stone, ASCE (Geotechnical Special Publication, no.72), 1999, pp. 33-41.
    [28] Bray, D. E. and McBride, D., "Acoustic Emission Technology." Nondestructive Testing Techniques, New York, pp. 345-377, John Wiley & Sons Inc. (1992).
    [29] Butters, J. N. and Leendertz, J. A., “Holographic and Video Techniques Applied to Engineering Mesurements,” Transactions of the Institute of Measurement and Control, Vol. 4, pp. 349-354 (1971).
    [30] Chen, L. H., “Failure of Rock Under Normal Wedge Indentation,” Ph. D. Thesis, University of Minnesota, USA (2002).
    [31] Chen, L. H. and Labuz, J. F., "Indentation of Rock Failure by Wedge-Shaped Tools,", International Journal of Rock Mechanics and Mining Sciences. Vol. 43, pp. 1023-1033 (2006).
    [32] Chen, Y.C., “Experimental determination of fabric for granular materials,” Ph. D. Thesis, Cornell University, New York, U. S. A., (1986).
    [33] Cundall, P. A., “A computer model for simulating progressive large scale movements in blocky rock systems,” Symposium of the International Society of Rock Mechanics, Nancy, France, II-8, pp. 129-136 (1971).
    [34] Cundall, P. A. and Strack, O. D. L., “A discrete numerical model for granular assemblies,” Geotechnique, 29, pp. 47-56 (1979).
    [35] Detournay, E., Fairhurst, C. and Labuz, J. F., "A Model of Tensile Failure Initiation under an Indentor," Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rock (MJFR-S), P. Rossmanith (Ed.), Vienna, Austria (1995).
    [36] Everling, G., “Comment upon the definition of shear strength,”International Journal of Rock Mechanics and Mining Sciences, Vol. 1, pp.145-154 (1964).
    [37] Fowler, T. J., "Acoustic Emission of Fiber Reinforced Plastics," Journal of the Technical Councils of ASCE, Proceedings of the ASCE, Vol. 105, No. 2, pp. 281-289 (1979).
    [38] Gabor, D., “A New Microscopic Principle,” Nature, Vol. 161, pp. 777-778 (1948).
    [39] Griffith, A. A., “The phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society. London, Vol. 221, pp. 163-197 (1921).
    [40] Hart, R., Cundall, P. A. and Lemons, J., “Formulation of a three-dimension distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed if many polyhedral blocks,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25, pp. 117-125 (1988).
    [41] Hertz, H. H., Hertz's Miscellaneous papers, London: Macmillan. (1896).
    [42] Holcomb, D. J. and Costin L. S.,. "Detecting Damage Surface in Brittle Materials Using Acoustic Emission," ASME, Journal of Applied Mechanics. Vol. 53, pp. 536-544 (1986).
    [43] Hopkins, H. H., and Tiziani, H. J., "Speckling in diffraction patterns and optical images formed with the laser," Proc. Int. Symp. Hologr., Besancon, 1970.
    [44] Huang H.,“ Discrete Element Modeling of Tool-Rock Interaction,” Ph.D. Thesis,University of Minnesota,Minnesota,U.S.A.(1999).
    [45] Itasca Consulting Group Inc., “Particle Flow Code in 2 Dimensions, Version 3.0,” Minneapolis, MN: ICG., (2002).
    [46] Itasca Consulting Group Inc., “Particle Flow Code in Three Dimensions, Version 3.0,” Minneapolis, MN: ICG., (1999).
    [47] Irwin, G. R., “Analysis of stresses and strain near the end of a crack,” Journal of Applied Mechanics, Vol. 24, pp. 361-364 (1948).
    [48] Irwin, G. R., “Analysis of Stresses and Strain Near the End of A Crack,” Trans. ASME, Journal of Applied Mechanics., Vol. 24, pp. 361-364 (1957).
    [49] James, D. L., “Acoustic Emission Investigation into Some Concrete Construction Problems,” Journal of Acoustic Emission, Vol. 8, No. 1-2, pp. s322-s325. World Meeting on Acoustic Emission. (1989).
    [50] Johnson, K. L., Contact Mechanics, Cambridge University Press. (1987).
    [51] Kaiser, J., “Undersuchungen Uber Das Aufrterten Geraucchen Beim Zevgersuch, ” Ph.D Thesis, Technische Hochschule, Munich, German. (1953).
    [52] Labuz, J. F. and Biolzi, L., “Characteristic strength of quasi-brittle materials,” International Journal Solids Structures, Vol. 35, Nos.31 32, pp. 4191-4203 (1998).
    [53] Leith, E. N. and Upatnieks, J., “Reconstructed Wavefronts and Communication Theory,” Journal of the Optical Society of America., Vol. 52, pp. 1123-1130 (1962).
    [54] Lajtai, E.Z., ”Mechanics of Second Order Faults and Tension Gashes,” Geological Society of America Bulletin. Vol. 80, pp. 225-227 (1969).
    [55] Landis, C., “Automated Determination of First P-wave Arrival and Acoustic Emission Source Location,” Journal of Acoustic Emission, Vol. 10, No. 1-2, pp. s97-s103 (1991/1992).
    [56] Leith, E. N. and Upatnieks, J., “Reconstructed wavefronts and communication theory,” Journal of the Optical Society of America., Vol. 52, pp. 1123-1130 (1962).
    [57] Lin, S. T., Hsieh, C. T. and Hu, C. P., “Two Holographic Blind-hole methods for measuring residual stress.” Experimental Mechanics, Vol. 34, pp. 141-147 (1994).
    [58] Maji, A. K., “Acoustic Emissions from Reinforced Concrete,” Experimental Mechanics, Vol. 34, No. 4, pp. 379-388 (1994).
    [59] Maji, A. K., Wang, J. L. and Lovato, J., “Electronic Speckle Pattern Interferometry for Fracture Mechanics Testing,” Experimental Techniques, Vol. 15, No. 3, pp. 19-23 (1991).
    [60] Mishnaevsky(Jr.), L. L., “Physical Mechanisms of Hard Rock Fragmentation under Mechanical Loading: A Review,” International Journal of Rock Mechanics and Mining Sciences. & Geomech. Abstr., Vol. 32, No. 8, pp. 763-766 (1995).
    [61] Mohr, O., “Welche Umstande Bedingen Die Elastizitatsgrenze Und Den Bruch Eines Materiales,” Zeitschrift des Vereines Deutscher Ingenieure, Vol. 44, pp. 1524-1530 (1900).
    [62] Moore, A. J. and Tyrer, J. R., "An electronic speckle pattern interferometry for complete in-plane displacement measurement," Measurement Science and Technology, Vol. 1, pp. 1024-1030 (1982).
    [63] Ohtsu, M., “Acoustic Emission Characteristics of Concrete and Fundamental Mechanisms,” Ph. D. Thesis, Kyoto University, Japan. (1982).
    [64] Ohno, K. and Ohtsu, M., “Crack Classification in Concrete Based on Acoustic Emission,” Construction and Building Materials, Vol. 24, pp. 2339-2346 (2010).
    [65] Patton, B. and Gangal, M., "Multiple Modes of Shear Failure in Rock", 1st Internatitonal Conference of Rock Mechanics, Vol. 1, pp. 509-513 (1966).
    [66] Potyondy, D. O. and Autio, J., “Bonded-particle simulations of the insitu failure test at Olkiluoto. in:Elsworth D, Tinucci J,Heasley K,editors.Rock mechanics in the national interest,” Proceedings of the 38th U.S.A. Rock Mechanics Symposium, pp. 1553-1560. (2001)
    [67] Potyondy, D. O. and Cundall, P. A., “A bonded-particle model for rock,” Int.J. Rock Mech. Min. Sci., Vol. 41, pp. 1329–1364. (2004).
    [68] Riedel, W., “Zur mechanik geologischer brucherscheinungen,” Centralbl. f. Mineral Geological U. Pal., Vol. B, pp.354-368 (1929).
    [69] Rowe, P. W., Barden, I. and Lee, I. K., ”Energy Components During the Triaxial Cell and Direct Shear Test,” Geotechnique, Vol. 14, pp. 247-261 (1964).
    [70] Skempton, A.W., “Some observations on tectonic shear zone,” Proceedings of the First International Cong. Rock Mechanics, Lisbon, Vol. 1, pp. 329-335 (1966).
    [71] Stimpson B., ”Modeling for Engineering Rock Mechanics,” International Journal of Rock Mechanics and Mining Sciences. Vol. 7, pp. 77-121 (1970).
    [72] Strack, O. D. L., and Cundall, P. A., “The distinct element method as a tool for research in granular media,” University of Minnesota Press, U.S.A. (1978).
    [73] Timoshenko, S. P. and Goodier. J. N., Theory of Elasticity,3rd ed., New York, McGraw-Hill.
    [74] Wang C., Tannant D. and Lilly P., “Numerical analysis of the stability of heavily jointed rock slopes using PFC2D,” International Journal of Rock Mechanics & Mining Sciences 40, pp. 415-424 (2003).
    [75] Wang, Y. C., Yin, X. C., Ke, K. J., Xia, M. F. and Peng, K. Y., “Numerical simulation of rock failure and earthquake process on mesoscopic scale,” Pure Applied Geophysics, Vol. 157, pp. 1905–1925 (2000).
    [76] Yang, Z. Y., “Qualitative Study on the Regularly Stick-Slip Shear Behavior of Ellipitical Particles,” Tamkang Journal of Science and Engineering, Vol. 1, No. 1, pp. 14-19 (1998).

    無法下載圖示 全文公開日期 2018/01/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE