簡易檢索 / 詳目顯示

研究生: 黃國忠
Kuo-Chung Huang
論文名稱: 應用聲射法與分離元素法探討擬脆性岩材破壞機理之研究
Applications of Acoustic Emission and Distinct Element Approach on Fracture Mechanism for Quasi-brittle Rocks
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 陳志南
Chee-Nan Chen
陳立憲
Li-Hsien Chen
黃燦輝
Tsan-Hwei Huang
鄭富書
Fu-Shu Jeng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 141
中文關鍵詞: 粒間剪/張微裂增量比孔洞擴展模式叢聚應力路徑擬脆性材料分離元素法聲射
外文關鍵詞: Shear/tensile microcracks increment ratio, Cavity expansion model, Localization, Stress path, Quasi-brittle material, Distinct element method, Acoustic emission
相關次數: 點閱:187下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 擬脆性岩材受力作用於不同應力路徑下,加載雖未達尖峰強度水準,但於材料內部所產生之微裂而至叢聚,可能已有導致後續破壞之先兆,故微裂發展趨勢對於巨觀結構穩定之研究相當重要。準此,本研究以實驗與數值分析兩種方式,探討擬脆性岩材在不同應力路徑下之破壞機理。
    在實驗方面,單軸壓縮與巴西試驗選用純水泥漿、C190水泥砂漿、大理岩及蛇紋岩試體;而貫切試驗選用C190水泥砂漿與大理岩試體。試體於加載歷程中(時間特徵),輔以非破壞聲射檢測技術,量測微觀裂縫之叢聚與分佈,並比對巨觀裂縫之初裂與延伸(空間特徵)。其結果顯示微、巨觀所得趨勢相符;同時,就實驗成果對應於相關理論解析,亦可得到良好之佐證。
    在數值分析方面,則以大理岩為例,利用分離元素程式PFC3D模擬不同應力路徑(單軸壓縮與巴西試驗)之試驗過程,並以滿足物理意義之模型校準(model fitting) 。比對數值演算之粒間微裂與實驗過程之微裂聲射,驗證數值分析於微觀研究之適用性,再就叢聚之發生時機、正規化之粒間剪/張微裂增量比值(△S/△T)及破壞模式(failure mode),進行深入之探討。
    經由實驗與數值分析兩者進行破壞機理之分析、比對及驗證,並求整體彈性、塑性與破壞歷程演變之確立,將可建立非破壞聲射檢測技術之相關準則,與提供數值分析選用驗證合理之輸入參數,以作為岩石工程實務之應用。


    When quasi-brittle rocks are loaded under different stress paths, fracture development led by the internal microcracks and localization may exist although the loading level has not reached the peak point. Therefore, studies on the correlations between microcrack development and the safety of macro-scale structure become rather important. Both the approaches of experimental and numerical analysis are adopted in this paper to investigate the fracture mechanism for quasi-brittle rocks under different stress paths.

    In the experiments, ordinary Portland cement (OPC) paste, C190 cement paste, marble and serpentinite specimens are selected for uniaxial compression and Brazilian tests. As for the indentation test, C190 cement paste and marble specimens are used. Non-destructive acoustic emission (AE) technique is applied in the loading process for specimens (time characteristics) to measure the localization and distribution of microcracks and further on to compare the initial crack and propagation of macrocracks (space characteristics). Experimental outcomes show the trends of micro and macro scales are consistent. Meanwhile, theoretical solutions are proven matching very well with the experimental results.

    For the numerical analysis, a discrete element code, PFC3D is used to simulate the testing processes of different stress paths (uniaxial compression and Brazilian tests) for marble specimen by the model fitting which satisfies physics meanings. Microfractures between particle contacts from numerical analyses are compared with AE microcracks in the experiments to verify the suitability of numerical analysis. Numerical analysis can assist more detailed studies of localization timings, normalized shear/tensile microcracks increment ratio (△S/△T) and failure mode.

    Based upon the analysis, comparision and verification of fracture mechanism for experiments and numerical analyses and further to ensure the evolutions of the whole elastic, plastic and fracture processes, relevant guidelines regarding to non-destructive AE technique can be established. Moreover, input parameters verified reasonable in the numerical analysis can be provided for the application in the rock engineering practice as well.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 符號對照表 XIV 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 範圍與方法 2 1.4 論文內容 3 第二章 文獻回顧 7 2.1 破壞試驗沿革 - 發展背景 7 2.1.1 單軸壓縮試驗之完整應力-應變行為 7 2.1.2 巴西試驗之彈性解析 9 2.1.3 貫切試驗之孔洞擴展模式(CEM) 11 2.2 非破壞檢測技術 - 聲射法(AE) 19 2.3 數值模擬與分析 - 分離元素法(PFC3D) 21 第三章 試驗規劃 30 3.1 試驗材料 30 3.1.1 人造類岩 31 3.1.2 天然岩材 32 3.2 試驗設備 34 3.2.1 聲射自動擷取系統 34 3.2.2 萬能油壓伺服系統 37 3.3 試驗步驟 38 3.3.1 單軸壓縮試驗 38 3.3.2 巴西試驗 38 3.3.3 貫切試驗 39 第四章 不同應力路徑試驗結果與分析 51 4.1 單軸壓縮試驗 51 4.1.1 完整應力-應變曲線與巨觀破壞模式 51 4.1.2 體積變化趨勢 53 4.1.3 聲射事件與微裂縫發展 54 4.2 巴西試驗 57 4.2.1 間接張力強度與巨觀破壞模式 57 4.2.2 聲射事件與微裂縫發展 58 4.2.3 裂端微塑區域探討 59 4.3貫切試驗 61 4.3.1 完整貫切歷程與巨觀破壞模式 61 4.3.2 聲射事件與微裂縫發展 62 4.3.3 貫切區域之彈-塑性界面 64 4.3.4 實驗值與理論解之比對 66 4.3.5 延性與脆性破壞之能量解析 67 第五章 PFC3D數值模擬與驗證 105 5.1 模型選用參數(幾何參數與材料參數)之探討 106 5.2 單軸壓縮試驗之模擬 106 5.2.1 模型建立 106 5.2.2 模擬結果 107 5.3 巴西試驗之驗證 109 5.3.1 模型建立 110 5.3.2 驗證結果 110 第六章 結論與建議 121 6.1 結論 121 6.1.1 不同應力路徑試驗結果與分析 121 6.1.2 PFC3D數值模擬與驗證 124 6.2 建議 126 6.1.1 不同應力路徑試驗結果與分析 126 6.1.2 PFC3D數值模擬與驗證 126 參考文獻 128 作者簡介 138

    [1] 中國國家標準,「CNS1010 水硬性水泥墁料抗壓強度檢驗法」,台灣,1993年。
    [2] 林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北,2006年。
    [3] 胡光宇、陳立憲、李昶佑,「以光電干涉技術研析岩石貫切破壞之塑性發展與缺陷長度」,第12屆大地工程研討會,溪頭,2007年。
    [4] 張家詮,「分離元素法於擬脆性岩材微觀破裂機制之初探」,碩士論文,國立台北科技大學土木工程系,台北,2007年。
    [5] 黃國忠,「以實驗及數值分析探討砂土在不同應力路徑下之行為及其組構之演變」,碩士論文,國立台灣工業技術學院營建工程技術系,台北,1992年。
    [6] 劉全偉,「溫度及壓力對花蓮大理岩力學行為之影響研究」,碩士論文,國立台灣工業技術學院營建工程技術系,台北,1996年。
    [7] 蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,碩士論文,國立台灣科技大學營建工程系,台北,2005年。
    [8] ASTM C215-02, “Standard test method for fundamental transverse, longitudinal, and torsional frequencies of concrete specimens,” Annual book of ASTM standards, American Society for Testing and Materials (2003).
    [9] ASTM C597-02, “Standard test method for pulse velocity through concrete,” Annual book of ASTM standards, American Society for Testing and Materials (2002).
    [10] ASTM D4404-84, “Standard test method for determination of cumulative mercury intrusion volume and pore volume distribution of soil and rock by mercury intrusion porosimetry,” Annual book of ASTM standards, American Society for Testing and Materials (1998).
    [11] ASTM E610-82, “Standard Definitions of Terms Relating to Acoustic Emission,” Annual book of ASTM standards, American Society for Testing and Materials (1999).
    [12] ASTM E976-84, “Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response,” Annual book of ASTM standards, American Society for Testing and Materials (2000).
    [13] Atkinson, B. K., “Fracture mechanics of rock,” Academic, New York (1987).
    [14] Bazant, Z. P. and Kazemi, M. T., “Determination of fracture energy process zone length and brittleness number from size effect with application to rock and concrete,” International Journal of Fracture, 44, pp. 111-131 (1990).
    [15] Bieniawski, Z. T., “Mechanism of brittle fracture of rock, Part I: Theory of the fracture process,” International Journal of Rock Mechanics and Mining Sciences, 4, pp. 395-406 (1967).
    [16] Bieniawaki, Z. T., “Stability concept of brittle fracture propagation in rock,” Engineering Geology, 2, pp. 149-162 (1967).
    [17] Boussinesq, J., “Applications of potentials for the study of equilibrium and movement of elastic solids,” (in French) Gautier-Villars, Paris (1985).
    [18] Bridell, J. M., “Reducing frictional constraint in compression testing through lubrication,” MS Thesis, University of Minnesota, U.S.A. (1991).
    [19] Chen, L. H., “Failure of rock under normal wedge indentation,” Ph.D. Thesis, University of Minnesota, U.S.A. (2002).
    [20] Chen, L. H. and Labuz, J. F., “Indentation of rock by wedge-shaped tools,” International Journal of Rock Mechanics and Mining Sciences, 43, pp. 1023-1033 (2006).
    [21] Chen, L. H., Huang, K. C. and Chen, Y. C., “Acoustic emission at wedge indentation fracture in quasi-brittle materials,” Journal of Mechanics, Accepted (2008).
    [22] Chen, Y. C., “Experimental and numerical determination of fabric for granular materials,” Ph.D. Thesis, Cornell University, New York, U.S.A. (1986).
    [23] Cook, R. A. and Hover, K. C., “Mercury porosimetry of cement-based materials and associated correction factors,” ACI Materials Journal, 90, pp. 152-161 (1993).
    [24] Cundall, P. A., “A computer model for simulating progressive large scale movements in blocky rock systems,” Symposium of the International Society of Rock Mechanics, Nancy, France, II-8, pp. 129-136 (1971).
    [25] Cundall, P. A. and Strack, O. D. L., “A discrete numerical model for granular assemblies,” Geotechnique, 29, pp. 47-56 (1979).
    [26] Damjanac, B. and Detournay, E., “Numerical modeling of normal wedge indentation in rocks,” Proc. 35th U.S. Rock Mechanics Symposium, Ed. By J. J. K. Daemon and R. A. Schultz, Balkema, Rotterdam (1995).
    [27] Detournay, E., Fairhurst, C. and Labuz, J. F., “A model of tensile failure initiation under an indenter,” Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rock (MJFR-S), Ed. by P. Rossmanith, Vienna, Austria (1995).
    [28] Detournay, E., Damjanac, B. and Huang, H., “Normal wedge indentation of rocks by a wedge-shaped tool I: Theoretical model,” International Journal of Rock Mechanics and Mining Sciences, Accepted (2008).
    [29] Drescher, A. and Kang Y., “Kinematic approach to limit load for steady penetration in rigid-plastic soils,” Geotechnique, 37, pp. 233-246 (1987).
    [30] Drouillard, T. F., “A history of acoustic emission,” Journal of Acoustic Emission, 14, pp. 1-34 (1996).
    [31] Falls, S. D., Chow, T., Young, R. P. and Hutchins, D. A., “Acoustic emission analysis and ultrasonic velocity imaging in the study of rock failure,” Journal of Acoustic Emission, 8, pp. 166-169 (1989).
    [32] Förster, F. and Scheil, E. Z., “Acoustic investigation of martensite needle formation,” (in German) Zeitschrift für Metallkunde, 28, pp. 245-247 (1936).
    [33] Fowler, T. J., “Acoustic emission of fiber reinforced plastics,” Journal of the Technical Councils of ASCE, 105, pp. 281-289 (1979).
    [34] Goodman, R. E., “Introduction to rock mechanics,” 2nd edition, John Wiley & Sons, New York (1989).
    [35] Griffith, A. A., “The phenomena of rupture and flow in solids,” Philosophical Transactions of the Royal Society of London, Sereis A, 221, pp. 163-198 (1921).
    [36] Hart, R., Cundall, P. A. and Lemons, J., “Formulation of a three-dimension distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed if many polyhedral blocks,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25, pp. 117-125 (1988).
    [37] Hawkes, I. and Mellor, M., “Uniaxial testing in rock mechanics laboratories,” Engineering Geology, 4, pp. 177-285 (1970).
    [38] Hazzard, J. F. and Young, R. P., “Simulating acoustic emissions in bonded- particle models of rock,” International Journal of Rock Mechanics and Mining Sciences, 37, pp. 867-872 (2000).
    [39] Hertz, H. H., Hertz's miscellaneous papers, Macmillan, London (1896).
    [40] Hondros, G.., “The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete,” Australia Journal of Applied Science, 10, pp. 243-268 (1959).
    [41] Huang, H., Damjanac, B. and Detournay, E., “Numerical modeling of normal wedge indentation in rocks with lateral confinement,” International Journal of Rock Mechanics and Mining Sciences, 34, pp. 613-613(1) (1997).
    [42] Huang, H. and Detournay E., “Intrinsic length scales in tool-rock interaction,” International Journal of Geomechanics, 8, pp. 39-44 (2008).
    [43] Hudson, J. A., Brown, E. T. and Fairhurst, C., “Optimizing the control of rock failure in servo-controlled laboratory tests,” Rock Mechanics, 3, pp. 217-224 (1971).
    [44] Irwin, G. R., “Fracture,” Handbuch der Physik, VI, Springer-Verlag, Berlin (1958).
    [45] ISRM, “Suggested methods for determining tensile strength of rock materials,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15, pp. 99-103 (1978).
    [46] ISRM, “Suggested methods for determining the uniaxial compressive strength and deformability of rock materials,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16, pp. 135-140 (1979).
    [47] Itasca Consulting Group Inc., “PFC3D (Particle Flow Code in Three Dimensions), Version 3.0 Manual,” Minneapolis, MN, U.S.A. (1999).
    [48] Jenkins, R. G. and Rao, M. B., “Effects of elliptical pores on mercury porosimetry results,” Powder Technology, 38, pp. 177-180 (1984).
    [49] Johnson, K. L., “The correlation of indentation experiments,” Journal of the Mechanics and Physics of Solids, 18, pp. 115-126 (1970).
    [50] Johnson, K. L., “Contact mechanics,” Cambridge University Press (1987).
    [51] Kaiser, J., “An investigation into the occurrence of noise in tensile tests or a study of acoustic phenomena in tensile tests,” Ph.D. Thesis, Technische Hochschule, Munich, Germany (1950).
    [52] Labuz, J. F., Cattaneo, S. and Chen L. H., “Acoustic emission at failure in quasi-brittle materials,” Construction and Building Materials, 15, pp. 225-233 (2001).
    [53] Lawn, B. and Swain, M., “Microfracture beneath the point indentation in brittle solids,” Journal of Materials Science, 10, pp. 113-122 (1975).
    [54] Lawn, B. and Wilshaw, R., “Review indentation fracture: Principles and Applications,” Journal of Materials Science, 10, pp. 1049-1081 (1975).
    [55] Lawn, B. and Evans, A., “A model for crack initiation in elastic/plastic indentation field,” Journal of Materials Science, 12, pp. 2195-2199 (1977).
    [56] Lawn, B. and Marshall, D., “Hardness, toughness, and brittleness: an indentation analysis,” Journal of the American Ceramic Society, 62, pp. 347-350 (1979).
    [57] Maage, M., “Frost resistance and pore size distribution in bricks,” Materials and Structures, 17, pp. 345-350 (1984).
    [58] Marsh, D., “Plastic flow in glass,” Philosophical Transactions of the Royal Society of London, Sereis A, 279, pp. 420-435 (1964).
    [59] Metha, P. K. and Monteiro, P. J. M. “Concrete: Structure, properties, and materials,” 2nd edition, Prentice Hall, New York, (1993).
    [60] Ohtsu, M., “Acoustic emission theory for moment tensor analysis,” Research in Nondestructive Evaluation, 6, pp. 169-184 (1995).
    [61] Ohtsu, M., Okamoto, T. and Yuyama, S., “Moment tensor analysis of acoustic emission for cracking mechanisms in concrete,” ACI Structural Journal, 95, pp. 87-95 (1998).
    [62] Potyondy, D. and Cundall, P. A., “A bonded-particle model for rock,” International Journal of Rock Mechanics and Mining Sciences, 41, pp. 1329-1364 (2004).
    [63] Rice, J. R., “A path independent integral and the approximate analysis of strain concentration by notches and cracks,” Journal of Applied Mechanics, 35, pp. 379-386 (1968).
    [64] Rothenburg, L. and Bathurst, R. J., “Micromechanical features of granular assemblies with plane elliptical particles,” Geotechnique, 42, pp. 79-95 (1992).
    [65] Scholz, C. H., “Experimental study of the fracturing process in brittle rock,” Journal of Geophysical Research, 73, pp. 1447-1454 (1968).
    [66] Shah, K. R. and Labuz, J. F., “Damage mechanisms in stressed rock from acoustic emission,” Journal of Geophysical Research, 100, pp. 15527-15539 (1995).
    [67] Slaughter, W. S., “The linearized theory of elasticity,” Birkhauser, Boston (2002).
    [68] Strack, O. D. L., and Cundall, P. A., “The distinct element method as a tool for research in granular media,” University of Minnesota Press, U.S.A. (1978).
    [69] Timoshenko, S. P. and Goodier, J. N., “Theory of elasticity,” 3rd edition, McGraw-Hill, New York (1969).
    [70] Vutukuri V. S., Lama R. D. and Saluja, S. S., “Handbook on mechanical properties of rocks - Volume I,” Trans Tech Publications, U.S.A. (1974).
    [71] Wang, C., Tannant, D. and Lilly, P., “Numerical analysis of the stability of heavily jointed rock slopes using PFC2D,” International Journal of Rock Mechanics and Mining Sciences, 40, pp. 415-424 (2003).
    [72] Wanne, T., “Rock strength and deformation dependence on schistosity (simulation of rock with PFC3D),” Posiva Oy, Report 2002-5 (2002).
    [73] Wawersik, W. R., “Detailed analysis of rock failure in laboratory compress test,” Ph.D. Thesis, University of Minnesota, U.S.A. (2002).
    [74] Zietlow, W. K. and Labuz J. F., “Measurement of the intrinsic process zone in rock using acoustic emission,” International Journal of Rock Mechanics and Mining Sciences, 35, pp. 291-299 (1998).

    QR CODE