簡易檢索 / 詳目顯示

研究生: 何建立
Arief - Koeswanto
論文名稱: 水滴撞擊平板現象之研究
A Study on Water Drop Impact
指導教授: 林析右
Shi-Yow Lin
王孟菊
Meng-Jiy Wang
口試委員: 陳立仁
Li-Jen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 94
語文別: 英文
論文頁數: 85
中文關鍵詞: 水滴撞擊水-Paraffin wax高速攝影
外文關鍵詞: Drop Impact, Water-Paraffin wax, CCD Camera
相關次數: 點閱:181下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水滴撞擊平板現象之研究


    Drop impact is a complex interaction between inertia, surface tension, and viscous forces. The break–off of a drop from a stream of liquid was studied for almost 200 years. In general, there are two possible outcomes of droplet impact onto a solid and dry surface. The droplet may deposit on the surface and form a liquid film or the droplet will splash and produce secondary droplets. How a liquid droplet will behave depends on the internal parameters (mass, local velocity, viscosity) and external parameters (type of surface where droplet will contact).
    We can find drop impact phenomenon in our daily lives. The simple example is raindrop. We can see that a falling of liquid droplet can exhibit a variety of behaviors. From this simple example, we design this system in order to observe this phenomenon and try to find out the best method to calculate droplet size and center of mass when drop oscillates in the air.
    According to Rein [3], Rioboo [15], and Middleman [35], the liquid show spreading, rebounding, and splashing phenomena if drop impact on dry surface. In this work, we demonstrated those phenomena for water drop impact onto paraffin wax surface at 5, 9, and 13 cm heights from the sequence image in figure III.2, III.4, and III.6, respectively. From our observations, the system we designed is similar to the references.
    In order to get volume of drop and center of mass, we use AutoCAD 2007 software and rotates the image in X and Y directions. These two parameters will be use to calculate the conservation among potential, kinetic, and surface energies. The height in potential energy equation is assumed the same with center of mass which is depending on time. To find out the local velocity, we used center of mass and made the linear relation. From the linear equation, we used the slope value and multiply it with 2900 frame / second. We took the results as the local velocities. And we use equation (I.16) to calculate the surface energy. However, the surface energy cannot be calculated for the moment due to there is no maximum diameter data of water drop available.

    Abstract i Acknowledgement ii Table of Contents iii Table List vii Figure List viii Chapter I. Introduction 1 I.1 Introduction 1 I.2 Literature Review 2 I.2.1 Theoretical approach 2 I.2.2 Numerical approach 3 I.2.3 Experimental approach 4 I.2.4 Important Parameters that Related to Drop Impact 5 I.2.4.1 Droplet velocity 6 I.2.4.2 Droplet diameter 7 I.2.4.3 Viscosity 8 I.2.4.4 Wettability 8 I.2.4.5 Surface tension 9 I.2.4.6 Weber number 10 I.2.4.7 Ohnesorge number 11 I.2.5 Interaction between Drop and Solid Surface 11 I.2.5.1 Initial phase 14 I.2.5.2 Spreading phase 15 I.2.5.3 Splashing phase and splashing threshold 16 A. Splashing phase 16 B. Splashing threshold 17 I.2.5.4 Deposition – Splashing of the droplet 17 I.3 Research Purpose 19 I.3.1 Objectives 19 I.3.2 Scopes 19 Chapter II. Experimental Equipment and Procedure 20 II.1 Experimental Apparatus 20 II.2 Materials 22 II.3 Experimental Procedure 23 II.3.1 Calibration 23 II.3.2 Data acquisition 24 II.3.2.1 Aspect ratio and Real scale 24 II.3.2.2 Volume of drop by AutoCAD 2007 24 II.3.2.3 Radius of drop 25 II.3.2.4 Center of mass by AutoCAD 2007 25 II.4 Experimental Variables 25 II.4.1 Distance between end of needle to solid surface 25 II.4.2 Type of solid surface 25 Chapter III. Experiment Results and Discussion 26 III.1 Results of Calibrations 26 III.1.1 Calibration in X and Y directions 26 III.1.2 Aspect ratio and Real scale 33 III.2 Experimental Results for Water Drop Impact onto Paraffin Wax at 5, 9, 13 cm 34 III.2.1 Sequence image for water drop impact onto paraffin wax at 5, 9, 13 cm 34 III.2.1.1 Sequence image for Water – Paraffin wax at 5 cm 34 1.Initial stage 34 2.Spreading and rebounding stage 35 III.2.1.2 Sequence image for Water – Paraffin wax at 9 cm height 37 1.Initial stage 37 2.Spreading and rebounding stage 37 III.2.1.3 Sequence image for Water – Paraffin wax at 13 cm height 40 1.Initial stage 40 2.Spreading and rebounding stage 41 III.2.2 Calculation volume for the drop 45 III.2.2.1 Volume for Water – Paraffin wax at 5 cm height 45 1.Initial stage 45 2.Spreading and rebounding stage 45 III.2.2.2 Volume for Water – Paraffin wax at 9 cm height 48 1.Initial stage 48 2.Spreading and rebounding stage 49 III.2.2.3 Volume for Water – Paraffin wax at 13 cm height 51 1.Initial stage 51 2.Spreading and rebounding stage 52 III.2.3 Calculation the center of mass 56 III.2.3.1 Center of mass for Water – Paraffin wax at 5 cm height 56 1.Initial stage 56 2.Spreading and rebounding stage 57 i.Upper drop oscillates in the air 57 ii.Lower drop oscillates in the air 62 III.2.3.2 Center of mass for Water – Paraffin wax at 9 cm height 64 1.Initial stage 64 2.Spreading and rebounding stage 65 i.Upper drop oscillates in the air 65 ii.Lower drop oscillates in the air 65 III.2.3.3 Center of mass for Water – Paraffin wax at 13 cm height 68 1.Initial stage 68 2.Spreading and rebounding stage 69 i.Upper drop detaches from lower drop 69 ii.Upper drop will rejoin again with lower drop 69 iii.Lower drop oscillates in the air 72 III.3 Discussion 79 Chapter IV. Conclusions and Prospective 81 IV.1 Conclusions 81 IV.2 Prospective 82 Literature Cited 83

    [1]Mundo, C., Sommerfeld, M., Tropea, C., International Journal Multiphase
    Flow 1995, 21, 151 – 173.
    [2]Worthington, A. M., Proceedings of the Royal Society of London 1876, 25,
    261 – 271.
    [3]Rein, M., Fluid Dynamics Research 1993, 12, 61 – 93.
    [4]Pasandideh-Fard, M., Qiao, Y. M., Chandra, S., Mostaghimi, J., American
    Institute of Physics 1996, 8, 650 – 659.
    [5]Chandra, S., and Avedisian, C. T., Proceeding Royal Society of London A
    1991, 432, 13 – 41.
    [6]Foote, G. B., Journal of the Atmospheric Sciences 1974, 32, 390 – 402.
    [7]Harlow, F. H., and Shannon, J. P., Journal of Applied Physics 1967, 38,
    3855 – 3866.
    [8]Harlow, F. H., and Welch, J. E., Physics of Fluids 1965, 8, 2182 – 2189.
    [9]Trapaga, G., and Szekely, J., Metallurgical and Materials Transactions B
    1997, 22, 901 – 914.
    [10]Liu, H., Lavernia, E. J., Rangel, R. H., Journal of Physics D: Applied
    Physics 1993, 26, 1900 – 1908.
    [11]Tsurutani, K., Yao, M., Senda, J., Fujimoto, H., JSME International
    Journal Series II 1990, 33, 555 – 561.
    [12]Fukai, J., Shiiba, Y., Yamamoto, T., Miyatake, O., Poulikakos, D.,
    Megaridis, C. M., Zhao, Z., American Institute of Physics 1995, 7, 236 –
    247.
    [13]Fukai, J., Zhao, Z., Poulikakos, D., Megaridis, C. M., Miyatake, O.,
    American Institute of Physics 1993, 5, 2588 – 2599.
    [14]Bechtel, S. E., Bogy, D. B., Talke, F. E., IBM. Journal Research
    Development 1981, 25, 963 – 971.
    [15]Rioboo, R., Marengo, M., Tropea, C, Experiments in Fluids 2002, 33, 112 –
    124.
    [16]Mao, T., David C. S., Tran, H., AIChE Journal 1997, 43, 2169 – 2179.
    [17]Zhang, X., and Basaran, O. A., Journal of Colloid and Interface Science
    1997, 187, 166 – 178.
    [18]Wachters, H. J., and Westerling, N. A., Chemical Engineering Science 1963,
    21, 1047 – 1056.
    [19]Levin, Z., and Hobbs, P. V., Proceedings of the Royal Society of London A
    1971, 269, 555 – 585.
    [20]Stow, C. D., and Hadfield, M. G.., Proceedings of the Royal Society of
    London A 1981, 373, 419 – 441.
    [21]Jayaratne, O. W., and Mason, B. J., Proceedings of the Royal Society of
    London A 1964, 280, 545 – 565.
    [22]Özdemiz, I. B., and Whitelaw, J. H., Journal Fluid Mechanics 1992, 240,
    503 – 532.
    [23]Crowe, C. T., “Multiphase Flow Handbook”, 2006, Taylor & Francis, LLC,
    Florida.
    [24]Roisman, I. V., Rioboo, R., Tropea, C., Proceeding Royal Society of London
    A 2002, 458, 1411 – 1430.
    [25]Wallis, G. B., International Journal Multiphase Flow 1974, 1, 491 – 511.
    [26]Fuchs, N. A.; “The Mechanics of Aerosols”, 1964, Pergamon Press, London.
    [27]Range, K. and Feulilebois, F., Journal of Colloid and Interface Science
    1998, 203, 16 – 30.
    [28]Rao, E. V. L. N., Kuman, R., Kuloor, N. R., Chemical Engineering Science
    1966, 21, 867 – 880.
    [29]Zhang, X., Harris, M. T., Basaran, O. A., Journal of Colloid Interface
    Science 1994, 168, 47 – 60.
    [30]Rioboo, R., and Tropea, C., Atomization Sprays 2001, 11, 155 – 166.
    [31]Kalantari, D., and Tropea, C., International Journal of Multiphase Flow
    2007, 33, 525 – 544.
    [32]Scheller, B. L., and Bousfield, D. W., AIChE Journal 1995, 41, 1357 –
    1367.
    [33]Engel, O. G., J. Res. NBS 1955, 54, 281 – 298.
    [34]Hoffman, R. L., Journal Colloid Interface Science 1975, 50, 228 – 241.
    [35]Middleman, S., “An Introduction to Fluid Dynamics”, 1998, John Wiley and
    Sons, Inc., New York.
    [36]Sadhal, S. S., Ayyaswamy, P. S., Chung, J. N., “Transport Phenomena with
    Drops and Bubbles”, 1997, Springer–Verlag, Inc., New York.
    [37]Rioboo, R., Adao, M. H., Voue, M., Journal Material Science 2006, 41,
    5068 – 5080.
    [38]Bejan, A., and Gobib, D., International Journal of Heat and Mass Transfer
    2006, 49, 2412 – 2419.
    [39]Lesser, M. B. and Field, J. E., Annual Review Fluid Mechanic 1983, 15,
    97 – 122.
    [40]Stoebe, T., Lin, Z., Hill, R. M., Ward, M. D., Davis, H. T., Langmuir
    1996, 12, 337 – 344.
    [41]de Gennes, P. G., Review of Modern Physics 1985, 57, 827 – 863.
    [42]Dussan V., E. B., Annual Review Fluid Mechanics 1979, 11, 371 – 400.
    [43]http://en.wikipedia.org/wiki/Prolate
    [44]http://en.wikipedia.org/wiki/Oblate
    [45]Voue´ M., Rioboo R., Bauthier C., Conti J., Charlot M., De Coninck J.,
    Journal of the European Ceramic Society 2003, 23, 2769 – 2775.
    [46]Robert C. Weast, “Handbook of Chemistry and Physics”, 1979, 60th
    edition, pp. F–45, CRC Press, Florida.
    [47]Perry, R. H. and Green, D. W., “Perry’s Chemical Engineers’ Handbook”,
    1997, 7th edition, pp. 2–91, 1–18, 2–323,McGraw Hill, New York.
    [48]Hwang B. Y.; “A Study of Wetting Phenomena”; Master Thesis (2003).

    QR CODE