簡易檢索 / 詳目顯示

研究生: 洪逸霖
Yi-Lin Hung
論文名稱: 液滴撞擊平板行為研究-純水液滴在玻璃、parafilm、與芋頭葉面上
A Study of the Droplet Impact Behavior –water on glass, parafilm and Colocasia
指導教授: 林析右
Shi-Yow Lin
口試委員: 陳立仁
Li-Jen Chen
王孟菊
Meng-Jiy Wang
蔡瑞瑩
Ruey-Yug Tsay
王安邦
An-Bang Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 68
中文關鍵詞: 液滴撞擊潤濕速率捕捉氣泡
外文關鍵詞: droplet impingment, wetting velocity, trapple bubble
相關次數: 點閱:161下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液滴撞擊固體後的行為受到液滴和基材的物理化學性質影響:如增加液滴撞擊速率或液滴大小將會使液滴撞擊後的潤濕直徑增加;相反地,若增加液體之表面張力與黏度則會使液滴撞擊後的形態變化過程減緩等。本研究主要可分為兩大部分:液滴撞擊固體平板後的動態行為與液滴碰撞平板後捕捉氣泡的行為。
    在液滴撞擊固體平板的動態行為的研究中,首先以純水液滴撞擊固態撞擊固態平板,並透過改變不同變數:撞擊基材(玻璃、parafilm、芋頭葉)、液滴撞擊速率、液滴大小,來比較各變數對液滴撞擊行為產生的影響。並以瓜爾豆膠水溶液重複測試液滴撞擊parafilm的結果,比較不同變數對結果所產生的影響。從實驗數據得知:液滴撞擊速率與液滴大小增加時,液滴撞擊後的潤濕速率也隨之增加;液滴若具有較高的黏度,液滴潤濕速率也隨之減緩;液滴的初始潤濕速率與固液接觸角的關係較小,但其後液滴潤濕速率在親水性基材上較快,而疏水性基材上較慢。
    第二部份探討液滴撞擊平板後捕捉氣泡的行為。此部分的研究首先分析液滴在撞擊後捕捉其中央凹陷處空氣的行為,以探討液滴內形成氣泡的機制;接著改變撞擊時的條件(液滴撞擊速率、液滴大小),以了解撞擊後液滴中央凹陷處能捕捉氣泡的條件。並探討不同液滴撞擊速率下,撞擊後液滴中央空洞捕捉氣泡的不同情形與親水性材質不會由此機制捕捉氣泡的原因。實驗結果顯示:純水液滴撞擊parafilm時,其發生的雷諾數範圍為700< Re< 1300,且液滴捕捉氣泡時,液滴中央凹陷的深度不一定能貫穿液滴;純水液滴撞擊芋頭葉時,其液滴中央空洞被封閉而捕捉氣泡的情形與液滴撞擊速率有關。


    The Behavior of the droplet impacting on a solid would be effected by physical and chemical characteristic of the droplet and the substrate. For instance, increasing the velocity of the falling droplet or the droplet’s diameter will increase the rate of spreading, while the increase of surface energy or viscosity will lead to the decrease of the spreading rate. This study is composed of two parts: the ynamic behavior of droplets imapcting solid plates and air bubble entrapment of liquid droplets impinging solid surfaces.
    Dynamic behavior of droplets impacting solid plates is conducted with aqueous solutions on three different substrates: glass, Parafilm and Colocasia leaves. The effect of various variables, the velocity of the impinging droplets, droplets sizes, and different liquids (pure water and Guar gum solution), are studied. By comparing experimental results, we can determine and study the effect of each parameter on the dynamic behavior of the impinging droplets on solid plates. From the experiment result, wetting velocity after droplet impingment will increase by drop size and impinging velocity. Wetting velocity will decrease by droplet viscosity and contact angle. Initial wetting velocity affected by contact angle lessly.
    The second part is a study on air bubble entrapment of water droplets impinging on solid surface. By analyzing the behavior of droplets, we can study the mechanism behind the bubble entrapment of impinging droplets. Via changing the drop size and the impinging velocity, we study the condition under which bubble entrapment occurs; by changing impact velocities, we analyze the different cases of closing of the cavity and hope to understand the mechanismbehind. When water impact on parafilm, trapple bubble will happen on 700< Re< 1300 and the existence of a cylindrical air cavity through the whole droplet to the solid surface. is not necessarily. When water impact on Colocasia leaves,the site of closing the cylindrical air cavity through the whole droplet to the solid surface effect by impact velocities.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 符號表 V 表目錄 VI圖目錄 VII 第一章 前言 1 第二章 文獻回顧 3 第三章 實驗設備 10 3.1 主要儀器設備 10 3.2 其它儀器設備 12 3.3 儀器校正 13 3.4 實驗藥品 13 3.5 實驗條件選定 14 第四章 實驗結果 17 4.1液滴撞擊於固體平板的動態行為 17 a. 純水液滴撞擊parafilm與glass 17 b. Guar gum高分子膠水溶液撞擊parafilm 24 c. 純水液滴撞擊芋頭葉 31 4.2純水液滴撞擊疏水性材質後捕捉氣泡行為探討 36 a. 液滴撞擊高度的影響 41 b. 液滴大小的影響 42 c. 液滴捕捉氣泡的機制 45 第五章 實驗結果與討論 49 a液滴撞擊後液滴高度、液滴潤濕直徑與潤濕速率 49 b液滴撞擊後液滴生成氣泡的行為 50 參考文獻 51 附錄 55

    1. G. E. Cossali, A. Coghe, M. Marengo, “The impact of a single drop on a wetted solid surface”, Exp Fluids, 1996, 22, 463.
    2. S. Sikalo, C. Tropea, E. N. Ganic, “Impact of droplets onto inclined surfaces”, J. Colloid Interface Sci., 2005, 286, 661.
    3. R. Rioboo, M. Marengo, C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces”, Exp. Fluids ,2002, 33, 112.
    4. K. L. Pan, C. Y. Hung, “Droplet impact upon a wet surface with varied fluid and surface properties”, J. Colloid Interface Sci., 2010, 352, 186.
    5. V. Bergeron, D. Bonn, J. Y. Martin, L. Vovelle, “Controlling droplet deposition with polymer additives”, Nature, 2000, 405, 772.
    6. R.C. Crooks, J.J. Cooper-White, D.V. Boger, “The role of dynamic surface tension and elasticity on the dynamics of drop impact”, Chem. Eng. Sci., 2001, 56, 5575.
    7. Chr. Mundo, M . Sommerfeld, C. Tropea, “Droplet-wall collisions: Experimental studies of the deformation and breakup process”, Int. J. Multiphase Flow, 1995, 21, 151.
    8. M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, J. Mostaghimi, “Capillary effects during droplet impact on a solid surface”, Phys. Fluids, 1996, 8, 650.
    9. J. O. Marston, S. T. Thoroddsen, “Apex jets from impacting drops”, J. Fluid Mech., 2008, 614, 293.
    10. K. P. Gatne, M. A. Jog, R. M. Manglik, “Surfactant-induced modification of low weber number droplet impact dynamics”, Langmuir, 2009, 25, 8122.
    11. M . Aytouna, D . Bartolo, G . Wegdam, D . Bonn, S . Rafai, “Impact dynamics of surfactant laden drops: Dynamic surface tension effects”, Exp. Fluids, 2010, 48, 49.
    12. J. J. Cooper-White, R. C. Crooks, K. Chockalingam, D. V. Boger, “Dynamics of polymer-surfactant complexes: Elongational properties and drop impact behavior”, Ind. Eng. Chem Res, 2002, 41, 6443.
    13. R.C. Crooks, J.J. Cooper-White, D.V. Boger, “The role of dynamic surface tension and elasticity on the dynamics of drop impact”, Chem. Eng. Sci., 2001,56 5575.
    14. S. Inada, W. J. Yang, “Solidification of molten metal droplets impinging on a cold surface”, Exp. Heat Transfer, 1994, 7, 93.
    15. S. D. Aziz, S. Chandra, “Impact, recoil and splashing of molten metal droplets”, Int. J. Heat Mass Tran., 2000, 43, 2841.
    16. R Bhola, S. Chandra., “Parameters controlling solidification of molten wax droplets falling on a solid surface”, J. Mat.Sci, 1999, 34, 4883.
    17. D. A Gorham, “Anomalous behaviour of high velocity oblique liquid impact”, Wear, 1977, 41, 2.
    18. D.Bartolo, F. Bouamrirene, . Verneuil, A. Buguin, P. Silberzan, S. Moulinet, “Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces”, Europhys. Lett., 2006, 74, 299.
    19. H. Fujimoto, N. Hatta, H. Takuda, “Collision behavior of a water droplet with a hot surface”, FED - Am. Soc. Mech. Eng., Fluids Eng. Div. Newsl.&not;, 1997, 244,159.
    20. A. B. Wang, C. H. Lin, C. C. Chen, “ The critical temperature of dry impact for tiny droplet impinging on a heated surface”, Phys. Fluids., 2000, 12, 1622.
    21. J. Madejski, “Solidification of droplets on a cold surface”, Int. J. Heat Mass Tran., 1976,19, 1009.
    22. B. S. Kang, D. H. Lee, “ On the dynamic behavior of a liquid droplet impacting upon an inclined heated surface”, Exp. Fluids., 2000, 29, 380.
    23. R. Rioboo, M. Vou, A. Vaillant, J. De Coninck, “ Drop impact on porous superhydrophobic polymer surfaces”, Langmuir, 2008, 24, 14074.
    24. T. S. Zen, F. C. Chou, J. L. Ma, “ Ethanol drop impact on an inclined moving surface”, Int. Commun. Heat Mass., 2010, 37, 1025.
    25. F. C. Chou, T. S. Zen, K. W. Lee, “An experimental study of a water droplet impacting on a rotating wafer”, Atomization Spray, 2009, 19, 905.
    26. R. E. Pepper, L. Courbin, “Splashing on elastic membranes: The importance of early-time dynamics”, Phys. Fluids, 2008, 20, 8.
    27. R. Rioboo, M. Vou, H. Ado, J. Conti, A. Vaillant, D. eveno, De Coninck, “Drop impact on soft surfaces: Beyond the static contact angles”, Langmuir, 2010, 26, 4873.
    28. S.R. Werner, J.R. Jones, A.H.,A.R.H. Paterson, D.L. Pearce, “Droplet impact and spreading: Droplet formulation effects”, Chem. Eng. Sci., 2007, 62, 2336.
    29. X. Zhang, O.A. Basaran, “Dynamic surface tension effects in impact of a drop with a solid surface”, J. Colloid Interface Sci., 1997, 187, 166.
    30. A.M. Imano, A. Beroual, “Deformation of water droplets on solid surface in electric field.”, J. Colloid Interface Sci., 2006, 298, 869.
    31. L. Xu, W.W. Zahang, S.R.Nagel, “Drop splashing on a dry smooth surface”, Phys. Rev. Lett., 2005, 94, 184505.
    32. R. Rioboo, M.H. Adao, M. Voue, J.D. Coninck, “Experimental evidence of liquid drop break-up in complete wetting experiments”, J. Mater. Sci. , 2006, 41, 5068.
    33. S. Sikalo, C. Tropea, E.N. Ganic, “Dynamic wetting angle of a spreading droplet”, Exp. Thermal Fluid Sci. , 2005, 29,798.
    34. S.R. Werner, J.R. Jones, A.H.,A.R.H. Paterson, D.L. Pearce, “Droplet impact and spreading: Droplet formulation effects”, Chem. Eng. Sci. 2007 ,62,2336.
    35. G.O. Berim, E.Ruckenstein, “ Microcontact and macrocontact angles and the drop stability on a bare surface”, J. Phys. Chem. B , 2004, 108, 19330.
    36. F.T. Dodge, “The spreading of liquid droplets on solid surfaces”, J. Colloid Interface Sci., 1988, 121, 154.
    37. H. Dong, W.W. Carr, D.G. Bucknall, J.F. Morris, “Temporally-resolved inkjet drop impaction on surfaces”, AIChE J., 2007, 53, 2606.
    38. R.Rioboo, C.Tropea, “Outcomes from a drop impact on solid surfaces”, Atomization Spray, 2001, 11, 155.
    39. T. Mao, D.C.S. Kuhn, H. Tran, “Spread and Rebound of Liquid Droplets upon Impact on Flat Surfaces”, AIChE J., 1997, 43, 2169.
    40. R. Rioboo, M. Marengo, C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces”, Exp. Fluids ,2002, 33, 112.
    41. P.Attane, F. Girard, V. Morin, “An energy balance approach of the dynamics of drop impact on a solid surface”, Phys. Fluids, 2007,19, 012101.012101.
    42. S. Sikalo, C. Tropea, E.N. Ganic, “Dynamic wetting angle of a spreading droplet”, Exp. Thermal Fluid Sci., 2005, 29, 798.
    43. H. Fujimoto, Y. Shiotani, A.Y. Tong, T. Hama, H. Takuda, “Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate”, Int. J. Multiphase Flow, 2007, 33, 317.
    44. H. Park, W.W. Carr, J. Zhu, J.F. Morris, “Single drop impaction on a solid surface”, AIChE J., 2003, 49, 2461.
    45. S. Vafaeia, M.Z. Podowskia, “Analysis of the relationship between liquid droplet size and contact angle”, Adv. Colloid Interface Sci., 2005, 113, 133.
    46. C. Ukiwe, D.Y. Kwok, “On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces”, Langmuir, 2005, 21, 666.
    47. D.C. Roux, J.J. Cooper-White, “Dynamics of water spreading on a glass surface”, J.Colloid Interface Sci., 2004,277, 424.
    48. D. Sivakumar, K. Katagiri, T. Sato, H. Nishiyama, “Spreading behavior of an impacting drop on a structured rough surface”, Phys. Fluids, 2005, 17, 100608.
    49. S. Sikalo, M. Marengo, C. Tropea, E.N. Ganic, “Analysis of impact of droplets on horizontal surfaces”, Exp. Thermal Fluid Sci., 2002, 25 , 503.
    50. S. Sikalo, C. Tropea, E.N. Ganic, “Dynamic wetting angle of a spreading droplet”, Exp. Thermal Fluid Sci., 2005, 29, 798.
    51. J. Fukai, Y. Shiiba, T. Yamamoto, O. Miyatake, D. Poulikakos, C. M. Megaridis, Z. Zhao, “Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling”, Phys. Fluids, 1995, 7, 236.
    52. D. Bartolo, C. Josserand, D. Bonn, “Retraction dynamics of aqueous drops upon impact on non-wetting surfaces”, J. Fluid Mech., 2005, 545, 329.
    53. D. Bartolo, A. Boudaoud, G. Narcy, D. Bonn, “Dynamics of non-newtonian droplets”, Phys. Rev. Lett., 2007, 99, 174502.
    54. Vadillo, D. C.; Soucemarianadin, A.; Delattre, C.; Roux, D. C. D., “Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces”, Phys. Fuluids, 2009, 21, 122002.
    55. Roux, D. C.; Cooper-White, J. J., “Dynamics of water spreading on a glass surface”, J. Colloid Interface Sci., 2004, 277, 424.
    56. K. P. Galvin, A. Cork, T. F. Wall, “Droplet impaction with a substrate - The critical condition for detachment”, Colloids Surf. A, 1996, 113, 107-116.
    57. J. d. Ruiter, R. E.Pepper, H. A. Stone, “Thickness of the rim of an expanding lamella near the splash threshold”, Phys. Fluids, 2010, 22, 022104..
    58. T. D. Blake, A. Clarke, K. J. Ruschak, “Hydrodynamic assist of dynamic wetting”, AIChE J., 1994, 40, 229-242..
    59. W. M. Healy, J. G. Hartley, S. I. Abdel-Khalik, “Surface wetting effects on the spreading of liquid droplets impacting a solid surface at low Weber numbers”, Int. J. Heat Mass Transfer, 2001, 44, 235.
    60. Hu C. Pumphrey, , P. A. Elmore, “Entrainment of bubbles by drop impacts”, J. Fluid Mech, 1990, 220, 539.
    61. P. A. Elmore, G. L. Chahine, H. N.Oguz, “Cavity and flow measurements of reproducible bubble entrainment following drop impacts”, Exp Fluids, 2001, 31, 664.
    62. Y. Renardy, S. Popinet, L. Duchemin, M. Renardy, S. Zaleski, C. Josserand, M.-A. Drumright-Clarke, D. Richard, C. Clanet, D. Quere, “Pyramidal and toroidal water drops after impact on a solid surface”, J. Fluid Mech., 2003 484, 69.
    63. S. Chandra, C. T. Avedisian, Proc.: Math. Phys. Sci., “Droplet impact on a porous surface”, 1991, 432, 13.
    64. S. T. Thoroddsen, J. Sakakibara, Phys. Fluids, “Evolution of the fingering pattern of an impacting drop”, 1998,10, 1359-1374.
    65. D. B. van Dam, C. L. Clerc, Phys. Fluids, “Experimental study of the impact of an ink-jet printed droplet on a solid substrate”, 2004, 16, 3403.
    66. D. Bartolo, C. Josserand, D. Bonn, Phys. Rev. Lett., “Singular jets and bubbles in drop impact”, 2006,96, 124501.
    67. S.Gekle,J M Gordillo, D Meer, D Lohse, “High-speed jet formation after solid object impact”, Phys. Rev. Lett., 2009, 102, 034502.

    QR CODE