簡易檢索 / 詳目顯示

研究生: 張耀元
Yao-yuan Chang
論文名稱: 高溫熔融玻璃、氧化硼、銀之表面張力和接觸角測量
Surface Tension and Contact Angle Measurement of Glass, Boron Oxide, and Silver
指導教授: 林析右
Shi-yow Lin
口試委員: 王朝正
Chaur-jeng Wang
陳立仁
Li-jen Chen
蔡瑞瑩
Ruey-yug Tsay
徐錦志
Jiin-jyh Shyu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 92
中文關鍵詞: 表面張力懸垂液滴法熔融玻璃氧化硼
外文關鍵詞: surface tension, pendant drop, glass melt, boron oxide, and slver
相關次數: 點閱:149下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究自行組裝一高溫懸垂/固著熔融液滴之表面張力測量儀,藉由此系統可精確地測得高溫熔融玻璃、氧化硼和銀之表面張力、密度和接觸角。
    以高溫熔融液滴量測裝置,搭配撰寫連續取像程式和液滴邊界自動搜尋程式,藉由固著液滴/懸垂液滴之張力量測方法,繼而探討熔融液滴之界面性質(表面張力、接觸角和密度)。本論文主要分為三個部份:(1)藉由懸垂/固著液滴法量測高溫熔融玻璃之表面張力,進而探討此兩種方法量測熔融玻璃液滴表面張力之準確性與液滴形狀之完整性對表面張力量測準確性之影響;(2)利用懸垂液滴法量測氧化硼之表面張力,探討其表面張力隨溫度變化之情形;(3)利用固著液滴法測量固著熔融銀液滴於石墨及耐火磚基板上之表面張力和接觸角隨溫度變化之情形。
    實驗數據顯示:第一部份,使用懸垂液滴法可極準確地測得熔融玻璃的張力值(3 mN/m),而固著液滴則非為熔融玻璃張力量測的好方法(9至20 mN/m);此外,我們定義一形狀因子(Fc),可發現愈完整之液滴形狀愈可獲得較準確地表面張力值,即當形狀因子愈大時,其量測誤差值愈小。第二部份,利用懸垂液滴法量測熔融氧化硼表面張力隨溫度變化之情形,當溫度在500 – 600 oC時,氧化硼表面張力隨溫度變化情形並不顯著;在600 – 900 oC時,張力會隨著溫度上升而上升。熔融氧化硼之表面張力會隨溫度上升之原因,乃因熔融氧化硼之結構改變,即為B-O之鍵結轉換成不同型態,進而造成表面張力的上升。第三部份,利用固著液滴法量測熔融銀之表面張力和接觸角,在溫度1150-1175 oC之間,固著熔融銀在石墨平板上其接觸角和表面張力會有明顯的變化。在此溫度範圍下,熔融銀之表面張力值會從879 mN/m驟升成1024 mN/m,然後再降為871 mN/m;而熔融銀於此溫度範圍下,在石墨上之接觸角會從140o變成156o;若固著熔融銀液滴在耐火磚上時,其接觸角會隨溫度增加而下降,產生不同於液滴在石墨上之變化行為。


    A system for the measurement of surface tension of melting glasses is developed in this work. The methods used are the sessile and pendant drop tensiometry. The accuracy of tension measurement is compared and discussed at the end of this thesis.
    An apparatus for measuring the surface tension of molten glass, B2O3, and Ag at temperature ranging between 500 and 1600 oC was built first. A program for acquiring drop images continuously and locating the edge coordinates is then developed. After that, this tensiometer using the sessile / pendant drop method is used for the study of the dependency of surface tension on temperature. There are three main parts in this thesis: (i) surface tension of molten glass measured by pendant / sessile drop method and we discussed the accuracy of tension measurement by using pendant / sessile drop. Then, we defined a shape factor (Fc), and we discussed about the measurement uncertainty with shape completeness. (ii) Surface tension measurement of molten B2O3 was investigated by pendant drop method and we tried to understand why the surface tension of molten B2O3 vary with temperature in abnormal tendency. (iii) Surface tension of molten Ag was measuerd through sessile drop method and we discuss its surface tension and contact angle on graphite and refractory.
    Finally, we examined the results from these three parts. Firstly, the error of surface tension measurement by using the pendant drop method is around 3 mN/m; while the measurement error via the sessile drop method is around 9 – 20 mN/m. The latter is dependent upon the drop contact angle of the sessile drop. Secondly, we find that a complete drop would yield a more accurate result of tension measurement than a fragmented droplet. Thirdly, the surface tension of molten B2O3 inceases with rising temperature. Finally, we find that the contact angle of molten Ag on graphite would change from 140o to 156o with temperature from 1150 to 1175 oC.

    中文摘要 I Abstract II 誌 謝 III 目 錄 IV 表目錄 VI 圖目錄 VII 第一章 簡介 1 1.1 玻璃概述 1 1.2 玻璃組成及種類 3 1.3 熔融玻璃表面張力之量測方法 4 1.4 密度測量方法 7 第二章 實驗系統裝置及方法 9 2.1 實驗裝置 9 2.2 實驗裝置介紹 10 2.3 儀器校正 12 2.3.1 像素之計算 13 2.3.2 溫控系統穩定性測試 15 2.4 實驗方法 15 2.4.1 懸垂液滴法 15 2.4.2 固著液滴法 23 2.4.3 熔融玻璃密度之量測 24 第三章 熔融玻璃表面張力之量測 25 3.1 文獻回顧 25 3.2 實驗步驟及過程 26 3.2.1 實驗步驟 26 3.2.2 實驗操作過程 27 3.3 結果與討論 32 3.3.1 台製玻璃使用固著/懸垂液滴法之張力準確性探討 32 3.3.1.1 實驗結果 32 3.3.1.2 結論與討論 35 3.3.2 懸垂熔融玻璃液滴形狀完整性對張力準確性之探討 36 3.3.2.1 實驗結果 36 3.3.2.2 結論與討論 41 第四章 熔融氧化硼表面張力之量測 42 4.1 文獻回顧 42 4.2 實驗步驟及過程 43 4.2.1 實驗步驟 43 4.2.2 實驗操作過程 44 4.3 結果與討論 47 4.3.1 實驗結果 47 4.3.1.1 B2O3表面張力 47 4.3.1.2 利用懸垂/固著液滴法探討熔融氧化硼張力準確性 49 4.3.2 結論與討論 51 4.3.2.1 B2O3表面張力部分 51 4.3.2.2 張力準確性探討 51 第五章 熔融銀表面張力和接觸角之量測 53 5.1 文獻回顧 53 5.2 實驗步驟及過程 55 5.2.1 使用固著液滴法量測銀之表面張力 55 5.3 結果與討論 58 5.3.1 實驗結果 58 5.3.1.1 熔融銀表面張力之量測 58 5.3.1.2 熔融銀接觸角之量測 58 5.3.2 結論與討論 61 5.3.2.1 熔融銀表面張力之量測 61 5.3.2.2 熔融銀接觸角之量測 64 第六章 結論與建議 66 6.1 結論 66 6.2 建議 66 附錄A 68 參考文獻 75

    1. ASTM Standards C162
    2. H. G. Pfaender, Schott Guide to Glass, Chapman & Hall: London, (1996).
    3. 邱標麟,玻璃製造學,復文書局,(2002)。
    4. J. E. Shelby, “Introduction to glass Science and Technology”, 2nd Edition .New York , p.112-113.(2005).
    5. NIIR Board of Consultants & Engineers, The Complete Book on Glass and Ceramics Technology, (2005).
    6. ASTM Standards C338
    7. 沈良驛,玻璃製造法,五洲出版社,(1976)。
    8. 李文福,工程材料的本質與性質,國立編譯館,(1992)。
    9. 高政學,光學玻璃,復漢出版社,(2001)。
    10. A. Kucuk, A. G. Clare, L. E. Jones, “Estimation of the Surface Tension for Silicate Glass Melts at 1400 °C Using Statistical Analysis,” Glass Technol., 40, 149 (1999).
    11. G. W. Morey, The properties of glass, pp. 197. Reinhold, New York. (1938).
    12. L. Shartsis, L. S. Spinner, “Surface Tension of Molten Alkali silicates,” J. Res. Natl. Bur. Stand, 46, 385 (1951).
    13. C. A. Bradley, “Measurement of Surface Tension of Viscous Liquids,” J. Am. Ceram. Soc., 21, 339 (1938).
    14. N. M. Parikh, “Effect of Atmosphere on Surface Tension of Glass,” J. Am. Ceram. Soc., 41, 18 (1958).
    15. J. O’M Bockris, J. W. Tomlinson, and J. L. White, “The Structure of Liquid Silicates: Partial Molar Volumes and Expansivities,” Trans. Faraday Soc., 52, 229 (1956).
    16. D. R. Gaskell, A. McLean, R.G. Ward, “Density and Structures of Ternary Silicate Melts,” Trans Faraday Soc., 65, 1498 (1969).
    17. J. Johnston, L. H. Adams, “On the Density of Solid Substances with Especial Reference to Permanent Changes Produced by High Pressures,” J. Am. Chem. Soc., 34, 563 (1912).
    18. A. G. Clare, “Using Sessile and Pendant Drop Methods to Measure Density and Surface Tension,” the GlassResearcher, 10, 30 (2001).
    19. A. F. Crawley, “Densities of Liquid Metals and Alloys,” Int. Metall. Rev., 19, 32 (1974).
    20. A. G. Clare, C. A. Landcastle, L. E. Jones, “The Determination of Density and Surface Tension of Molten Glasses by the Sessile Drop Technique,” Proceeding Philips TNO Seminar, April, 8.1-8.5. (1997).
    21. A. Kucuk, A. G. Clare, L. E. Jones, “Density and Surface Tension of Glass Meltsas a Function of Composition at 1400 oC,” Ceram. Trans., 82, 287 (1998).
    22. C. Huth, R. L. Reed, “A Method for Estimating Interfacial Tensions and Contact Angles from Sessile and Pendant Drop Shapes,” J. Colloid Interface Sci., 91, 472 (1983).
    23. Y. Rotenberg, A. W. Neumann, “Determination of Surface Tension and Contact Angle from the Shapes of Axisymmetric Fluid Interfaces,” J. Colloid Interface Sci., 93, 169 (1983).
    24. J. M. Andreas, E. A. Hauser, and W. B. Tucker, “Boundary Tension By Pendant Drops,” J. Phys. Chem., 42, 1001 (1938).
    25. S. Y. Lin, and H. F. Hwang, “Measurement of Low Interfacial Tension by Pendant Drop Digitization,” Langmuir, 10, 4703 (1994).
    26. A. E. Badger, C. W. Parmeler, and A. E. Williams, “Surface Tension of Various Molten Glasses,” J. Am. Ceram. Soc., 20, 325 (1937).
    27. C. W. Parmeler, and C. G. Harman, “The Effect of Alumina on the Surface Tension of Molten Glass,” J. Am. Ceram. Soc., 20, 224 (1937).
    28. R. M. Willams, and H. E. Simpson, “A Note on the Effect of Lithium Oxide Upon the Surface Tension of Several Silicate Melts,” J. Am. Ceram. Soc., 34, 280 (1951)
    29. R. E. Boni, and G. Derge, “Surface Tensions of Silicates,” J. Met., 8, 53 (1956).
    30. A. J. G. Boyer, D. J. Fray, and T. R. Meadowcroft, “The Surface Tension and Molar Volumes of the Binary Phosphates of Sodium, Lithium, Calcium, and Zinc,” J. Phys. Chem., 71, 1442 (1967).
    31. S. Vaisburd, and D. G. Brandon, “A Combined Unit for Viscosity, Surface Tension and Density Measurements in Oxide Melts,” Meas. Sci. Technol., 8, 822 (1997)
    32. M. Yamashita, M. Suzuki, and H. Yamanaka, “Surface Tension Measurement of Glass Melts by the Maximum Bubble Pressure Method,” Glastech. Ber. Glass. Sci. Technol., 73, 337 (2000).
    33. R. G. Gossink, and J. M. Stevels, “Density and Surface Tension of Molten Alkalimolybdates and Tung states in Connection with Structure and Glass Formation,” J. Non-Cryst. Solids., 5, 217 (1971).
    34. H. Saski, Y. Anzai, X. Huang, and K. Terashima, “Surface Tension Variation of Molten Silicon Measured by the Ring Method,” Jpn. J. Appl. Phys., 34, 414 (1995).
    35. S. Fujino, H. Wang, and K. Morinaga, “Surface Tension of PbO-B2O3 and Bi2O3-B2O3 Glass Melts,” J. Mater. Sci., 40, 2207 (2005).
    36. C. L. Babcock, “Surface Tension Measurements on Molten Glass by a Modified Dipping Cylinder Method,” J. Am. Ceram. Soc., 23, 12 (1940).
    37. L. Shartsis, and S. Spinner, “Surface Tensions of Some Optical Glasses,” J. Am. Ceram. Soc., 30, 131 (1947).
    38. L. Shartsis, S. Spinner, and A. W. Smock, “Surface Tension of Compositions in the Systems PbO-B2O3 and PbO-SiO2,” J. Am. Ceram. Soc., 31, 23 (1948).
    39. L. Shartsis, and W. Capps, “Density, Expansivity, and Viscosity of Molten Alkali Silicates,” J. Am. Ceram. Soc., 35, 169 (1952).
    40. L. Shartsis, H. F. Shermer, and A. B. Bestul, “Immiscibility and Surface Tension of Some Simple Borates,” J. Am. Ceram. Soc., 41, 507 (1958).
    41. L. Shartsis, H. F. Shermer, and A. B. Bestul, “Surface Tension of Alkaline-Earth Borates Containing 3 Mole % Potassium Oxide,” J. Am. Ceram. Soc., 42, 242 (1959).
    42. Y. Suginohara, T. Yanagase, and H. Ito, “The Effects of Oxide Additions upon the Structure Sensitive Properties of Lead Silicate Melts” Trans. Jan. Inst. Mets., 3, 227 (1962).
    43. A. Prabhu, G. L. Fuller, R. L. Reed, and R. W. Vest, “Viscosity and Surface Tension of a Molten Lead Borosilicate Glass,” J. Am. Ceram. Soc., 58, 144 (1975).
    44. C. R. Amberg, “Effect of Molybdenum and Other Oxides on Surface Tension of Silicate Melts and on Properties of Refractories and Abrasives,” J. Am. Ceram. Soc., 29, 87 (1946).
    45. R. N. Mcnally, H. C. Yeh, and N. Balasubramanian, “Surface Tension Measurements of Refractory Liquids Using Modified Drop Weight Method,” J. Matel. Sci., 3, 136 (1968).
    46. G. J. Janz, M. R. Lorenz, “Precise Measurement of Density and Surface Tension at Temperatures up to 1000 C in one Apparatus,” Rev. Sci. Instrum., 31, 18 (1960).
    47. G. J. Janz, M. R. Lorenz, “Molten Carbonate Electrolytes: Physical Properties, Structure, and Mechanism of Electrical Conductance,” J. Electrochem. Soc., 108, 1052 (1961).
    48. T. Murase, A. R. McBirney, “Properties of Some Common Igneous Rock and Their Melts at High Temperature,” Geol. Soc. Amer. Bull., 84, 3563 (1973).
    49. H. R. Lillie, “Method for Measuring Flow Point of Glass,” J. Am. Ceram. Soc., 35, 149 (1952).
    50. D. R. Secrist, “Measurement of Surface Tension of Glasses by Capillary Flow Technique,” Am. Ceram. Soc. Bull., 48, 563 (1969).
    51. B. S. Ellefson, and N. W. Taylor, “Surface Properties of Fused Salts and Glasses: I Sessile-Drop Method for Determining Surface Tension and Density of Viscous Liquids at High Temperatures,” J. Am. Ceram. Soc., 21, 193 (1938).
    52. W. D. Kingery, and M. Humenik Jr., “Surface Tension at Elevated Temperatures. I. Furnace and Method for Use of the Sessile Drop Method; Surface Tension of Silicon, Iron and Nickel,” J. Phys. Chem., 57, 359 (1953).
    53. W. D. Kingery, and M. Humenik Jr., “Metal-Ceramic Interactions: III, Surface Tension and Wettability of Metal-Ceramic Systems,” J. Am. Ceram. Soc., 37, 18 (1954).
    54. W. D. Kingery, “Surface Tension of Some Liquid Oxides and Their Temperature Coefficients,” J. Am. Ceram. Soc., 42, 6 (1959).
    55. C. Maze, and G. Burnet, “A Non-Linear Regression Method for Calculating Surface Tension and Contact Angle from the Shape of a Sessile Drop,” Surface Sci., 13, 451 (1969).
    56. F. L. Harding, “Wetting of Ceramic Oxides by Molten Metals Under Ultrahigh Vacuum,” J. Am. Ceram. Soc., 53, 87 (1970).
    57. A. Passerone, R. Sangiorgi, and G. Valbusa, “Surface Tension and Density of Molten Glasses in the System La2O3-Na2Si2O5,” Ceramurg. Int., 5, 18 (1979).
    58. M. Askari, A. M. Cameron, and J. Oakley, “The Determination of Surface Tension at Elevated Temperatures by Drop Image Analysis,” High Temp. Technol., 8, 201 (1990).
    59. K. G. Ahari, M. Askari, and A. M. Cameron, “The Surface Tension of Some Sodium Borosilicate Glasses,” Phys. Chem. Glasses, 32, 72 (1991).
    60. H. K. Diedrich, A. Eckebracht, and G. Frischat, “Viscosity and Surface Tension of Oxynitride Glass Melts,” J. Am. Ceram. Soc., 78, 1123 (1995).
    61. D. A. Weirauch Jr., and D. P. Ziegler, “Surface Tension of Calcium Aluminosilicate Glass using Computerized Drop Shape Analysis,” J. Am. Ceram. Soc., 79, 920 (1996).
    62. A. Kucuk, A. G. Clare, and L. Jones, “Differences between Surface and Bulk Properties of Glass Melts I. Compositional Differences and Influence of Volatilization on Composition and Other Physical Properties” J. Non-Cryst. Solids, 261, 28 (2000).
    63. A. G. Clare, D. Wing, L. E. Jones, and A. Kucuk, “Density and Surface Tension of Borate Containing Silicate Glass Melts,” Glass Technol., 44, 59 (2003).
    64. J. K. Davis, and F. E. Bartell, “Determination of Surface Tension of Molten Materials - Adaptation of the Pendant Drop Method,” Anal. Chem., 20, 1182 (1948).
    65. J. J. Rusmussen, R. P. Nelson, “Surface Tension and Density of Molten A12O3,” J. Am. Ceram. Soc., 54, 398 (1971).
    66. K. Mukai, and T. Ishikawa, “Surface Tension Measurements on Liquid Slags in CaO-SiO2, CaO-Al2O3 And CaO-Al2O3-SiO2 Systems By a Pendant Drop Method,” J. Japan Inst. Metals, 45, 147 (1981).
    67. N. P. Bansal, and R. H. Doremus, “Surface Tension of ZrF4-BaF2-LaF3 Glass,” J. Am. Ceram. Soc., 67, C197 (1984).
    68. J. M. Lihrmann, J. S. Haggerty, “Surface Tensions of Alumina-Containing Liquids,” J. Am. Ceram. Soc., 68, 81 (1985).
    69. D. A.Weirauch Jr., The Surface Tension of Glass-Forming Melts. In: Pye DL, Montenero A, Joseph I, editors. Properties of Glass-Forming Melts. New York, USA: Taylor & Francis Group; 2005. p.143.
    70. F. Bashforth and S. C. Adams, “An Attempt to Test the Theories of Capillary,” Cambridge Univ. Press, Cambridge., U.K. 1883.
    71. N. E. Dorsey, “A New Equation for the Determination of surface Tension from the Form of a Sessile Drop or Bubble,” J. Wash. Acad. Sci., 18, 505 (1928).
    72. A. Kucuk, Structure and the Physicochemical Properties of Glasses and Glass Melts. USA: Alfred University; 1999.
    73. V. F. Zackay, D. W. Mitchell, S. P. Mitoff, and J. A. Pask, “Fundamentals of Glass to Metal Bonding: I, Wettability of Some Group I and Group VIII Metals by Sodium Silicate Glass,” J. Am. Ceram. Soc., 36, 84 (1953).
    74. R. R. Tummala and B. J. Foster, “Wetting of Glass to Metal and Glass to Ceramic in Water Vapor Atmosphere,” J. Mater. Sci., 10, 905 (1975).
    75. R. G. Simhan, L. L. Moore, P. R. Van Gunten, “Contact Angle of E and Borosilicate Glasses in Different Atmospheres,” J. Mater. Sci., 20, 1748 (1985).
    76. J. E. Lazaroff, P. D. Ownby, and D. A. Weirauch, Jr., “Wetting in an Electronic Packaging Ceramic System: I, Wetting of Tungsten by Glass in Controlled Oxygen Partial Atmospheres,” J. Am. Ceram. Soc., 78, 539 (1995).
    77. E. E. Shpil’rain, K. A. Yakimovich, and A. F. Tsitsarkin, “Investigation of the Surface Tension of Liquid boron Oxide to 2000 oC by the Cylinder Pulling Method,” High Temp. High Press., 4, 67 (1972).
    78. P. C. Li, A. C. Ghose, and G. J. Su, “Density of Molten Boron Oxide, rubidium and Caesium Borates,” Phys. Chem. Glasses, 1, 198 (1960).
    79. X. Shi, Q. Wang,w X. Niu, C. Li, and K. Lu, “An Examination of Surface Tension of Binary Lithium Borate Melts as a Function of Composition and Temperature,” J. Am. Ceram. Soc., 89, 3222 (2006).
    80. A. Napolitano, P. B. Macedo, and E. G. Hawkins, “Viscosity and Density of Boron Trioxide,” J. Am. Ceram. Soc., 48, 613 (1965).
    81. B. J. Keene, “Review of Data for the Surface Tension of Pure Metals” Int. Mater. Rev., 38, 157 (1993).
    82. K. C. Miller and Y. C. Su, “Review of Surface Tension Data for Metallic Elements and Alloys: Part 1 - Pure Metals,” Int. Mater. Rev., 51, 329 (2006).
    83. I. Egry, S. Sauerland, and G. Jacobs, “Surface Tension of Levitated Liquid Noble Metals,” High Temp. High Press., 26, 217 (1994).
    84. J. Lee, A. Kiyose, S.Nakatsuka, M. Nakamoto and T. Tanaka, “Improvements in Surface Tension Measurements of Liquid Metals Having Low Capillary Constants by the Constrained Drop Method” ISIJ International, 44, 1793 (2004).
    85. N. Eustathopoulos, M. G. Nicholos, and B. Drevet, Wettability at High Temperatures, Pergamon, 1999: p 317
    86. J. G. Lee, H. Mori, and Yasuda H., “Alloy Phase Formation in Nanometer-Sized Particles in the In-Sn System,” Phys. Rev. B, 65, 132106 (2002).
    87. J. G. Lee, and H. Mori, “Solid/Liquid Two-Phase Structures In Isolated Nanometer-Sized Alloy Particles,” Phys. Rev. B, 70, 144105 (2004).
    88. S. K. Rhee, “Critical Surface Energies of Al2O3 and Graphite,” J. Am. Ceram. Soc., 55, 300 (1972).
    89. S. Kalogeropoulou, C. Rado, and N. Eustathopoulos “Mechanisms of Reactive Wetting: The Wetting to Non-wetting Case,” Scripta Materialia, 41, 723 (1999).
    90. K. Nogf, M. Nishikawa, H. Fujii and S. Hara, “Wettability of Diamond by Liquid Pure Tin,” Acta Mater, 46, 2305 (1998).

    QR CODE