簡易檢索 / 詳目顯示

研究生: 楊明偉
Ming-Wei Yang
論文名稱: 懸掛氣泡之形狀效應
The Shape Effect of a Pendant Bubble on Dynamic Surface Tension of Surfactant Solution
指導教授: 林析右
Shi-Yow Lin
口試委員: 陳崇賢
none
陳立仁
none
蔡瑞瑩
none
王孟菊
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 103
中文關鍵詞: 懸掛氣泡界面活性劑擴散控制
外文關鍵詞: surfactant, adsorption kinetics, pendant bubble, diffusion-controlled
相關次數: 點閱:133下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用懸掛氣泡來研究界面活性劑於界面間吸附行為時,通常將界面形狀假設為平面或球狀。然而,不同毛細常數的懸掛氣泡形狀與球狀有不同的偏差;本研究首先利用有限元素法分析不同氣泡形狀對動態張力之影響。利用本研究所建立之方法,更可進一步分析溶液本體內不同時間之濃度分佈情況。對於擴散控制之程序,動態張力受到氣泡形狀與所使用之針頭大小兩個主要因素所影響。與球形假設相比,較小氣泡的針頭效應會使擴散加速,較大氣泡的形狀效應會使擴散減緩。
    以C12E4之模擬結果與實驗數據比對,亦可確認其質傳過程為擴散控制。如果以傳統之球狀模式評估其擴散係數,較小氣泡會高估6-10%,較大氣泡會低估10-12%。本研究更提出之一種簡易方法利用傳統球狀模式,來去除形狀效應與針頭效應對於動態張力的影響。


    A planar or spherical fluid-liquid interface was commonly assumed on studying the surfactant adsorption kinetics for a pendant bubble/drop in surfactant solutions. However, the shape of a pendant bubble deviates from a sphere unless the bubble’s capillary constant is close to zero. Up to date, the literature has no report about the shape effect on the relaxation of surface tension due to the shape difference between a pendant bubble and a sphere. In this work, dynamic surface tension (DST), based on an actual shape of pendant bubble with a needle, is simulated using a time dependent finite element method. The shape effect and the existence of a needle on DST are investigated. This numerical simulation resolves also the time-dependent bulk surfactant concentration. The depth of solution needed in order to satisfy the classical Ward-Tordai infinite-solution assumption was also studied. For a diffusion-controlled adsorption process, bubble shape and needle size are two major factors affecting the DST. The existence of a needle accelerates the bulk diffusion for a small bubble, however, the shape of a large pendant bubble decelerates the bulk diffusion.
    The DST of C12E4 was utilized to illustrate the above simulation. The simulation results indicate that (1) the existence of a needle accelerates bulk diffusion for a small bubble and (2) the shape of a large pendant bubble decelerates the bulk diffusion. The CSM, without considering the existence of needle and bubble shape, may underestimate the diffusivity 10 – 12 % for a large pendant bubble and overestimate the diffusivity 6 – 10 % for a small bubble.

    Table List iii Figure List iv Abstract ix 摘要 x Chapter 1 Introduction 1 Chapter 2 A Scale Analysis on the Roles of Convection in Pendant Bubble Method 2.1 Scaling Analysis 9 2.2 Criteria Establish 15 Chapter 3 Effect of Bubble Shape on Dynamic Surface Tension 18 3.1. Dynamic surface tension of a Pendant Bubble 18 3.2. Time-Dependent Mass Transport 20 3.3. The Finite Element Method 24 3.4. Adsorption Equations and Dynamic Surface Tension 25 3.5. Pendant Bubble Profile 26 3.6. Simulation Framework 27 3.7. Simulation Results 29 3.8. Illustration Example of C12E4 38 3.9. Effects of Pendant Bubble Shape and Needle 41 Chapter 4 An Illustration: DST of C12E4 - Considering Bubble Shape 43 4.1. Adsorption Kinetics 43 4.2. Time-Dependent Mass Transport Framework 45 4.3. Verification of C12E4 FEM 45 4.4. Shape Effect of Pendant Bubble 50 4.5. Simulation Conclusion 54 Chapter 5 Axisymmetric Modelling 55 5.1. Axisymmetric Simulation 55 5.2. Time-Dependent Axisymmetric Mass Transport 55 5.3. The Finite Element Method 56 5.4. Adsorption Equations and Dynamic Surface Tension 58 5.5. Simulation Framework 59 5.6. Simulation Results 62 5.7. Simulation Conclusion 72 Chapter 6 A Method for Correcting the Contact Angle from the θ/2 Method 75 6.1. Contact Angle 75 6.2. Contact Angle from Sessile Drop Profile 77 6.3. Contact Angle from θ/2 Method 79 6.4. Two Drops without Surface Tension 81 6.5. Correcting the Contact Angle from the θ/2 Method 84 Chapter 7 Conclusions and Suggestions 88 Literature Cited 90

    Literature Cited
    (1) Lin, S. Y.; K. McKeigue and C. Maldarelli, AIChE J. 1990, 36, 1785.
    (2) Stebe, K.; Lin, S. Y., Dynamic surface tension and surfactant mass transfer kinetics: measurement techniques and analysis. In Handbook of surfaces and interfaces of materials: Surface and interface analysis and properties; Nalwa, H. S., Ed.; Academic Press: San Diego, CA, 2001; Vol. 2, Chapter 2.
    (3) Wong, H.; Rumschitzki, D.; Maldarelli, C., J. Fluid Mech. 1999, 379, 279.
    (4) Levich, B. G., Physicochemical Hydrodynamics; Prentice Hall: New Jersey, 1967.
    (5) Ferri, J. K.; Stebe, K. J., Advances in Colloid and Interface Science 2000, 85, 61.
    (6) Miller, R.; Joos, P.; Fainerman, V. B., Advances in Colloid and Interface Science 1994, 49, 249.
    (7) Miller, R.; Fainerman, V. B.; Wüstneck, R.; Krägel, J.; Trukhin, D. V. Colloids Surf. A. 1998, 131, 225.
    (8) Beverung, C. J.; Radke, C. J.; Blanch, H. W. Biophys. Chem. 1999, 81, 59.
    (9) Bauget, F.; Langevin, D.; Lenormand, R. J. Colloid Interface Sci. 2001, 239, 501.
    (10) Miller, R.; Fainerman, V. B.; Makievski, A. V.; Krägel, J.; Grigoriev, D. O.; Kazakov, V. N.; Sinyachenko, O. V. Adv. Colloid Interface Sci. 2000, 86, 39.
    (11) Lu, J. J.; Yu, L. M. Y.; Cheung, W. W. Y.; Policova, Z.; Li, D.; Hair, M. L.; Neumann, A. W. Colloids Surf. B 2003, 29, 119.
    (12) Miller, R.; Kretzschmar, G. Colloid Polym. Sci. 1980, 258, 85.
    (13) Miller, R. Colloid Polym. Sci. 1981, 259, 375.
    (14) Liao, Y. C.; Franses, E. I.; Basaran, A. J. Colloid Interface Sci. 2003, 258, 310.
    (15) McCoy, B. J. Colloid Polym. Sci. 1983, 261, 535.
    (16) Mysels, K. J. J. Phys. Chem. 1982, 86, 4648.
    (17) Filippov, L. K.; Filippova, N.L. J. Colloid Interface Sci. 1997, 187, 352.
    (18) Yang, C.; Gu, Y. Langmuir 2004, 20, 2503.
    (19) Danvo, K. D.; Valkovska, D. S.; Kralchevsky, P. A. J. Colloid Interface Sci. 2002, 251, 18.
    (20) Borwankar, R. P.; Wasan, D. T. Chem. Eng. Sci. 1983, 38, 1637.
    (21) Liggerieri, L.; Ravera, F.; Ferrari, M.; Passerone, A.; Miller, R. J. Colloid Interface Sci. 1997, 186, 46.
    (22) Eastoe, J.; Dalton, J. S. Adv. Colloid Interface Sci. 2000, 85, 103.
    (23) Lin, S. Y.; Tsay, R. Y.; Lin, L. W.; Chen, S. I. Langmuir 1996, 12, 6530.
    (24) Lin, S. Y.; Lu, T. L.; Hwang W. B. Langmuir 1995, 11, 555.
    (25) Hsu, C. T.; Chang, C. H.; Lin, S. Y. Langmuir 2000, 16, 1211.
    (26) Ferri, J. K.; Lin, S. Y.; Stebe, K. J. J. Colloid Interface Sci. 2001, 241, 154.
    (27) Hsu, C. T.; Chang, C. H.; Lin, S. Y. Langmuir 1997, 13, 6204.
    (28) Rao, S. S. The Finite Element Method in Engineering Second Edition; Pergamon Press, 1986.
    (29) Reddy, J. N. An Introduction to The Finite Element Method Second Edition; McGRAW-HILL, 1993.
    (30) Saad, Y.; Schultz, M. H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems; SIAM J. of Sci. Statist. Comp.; 1986, 7, 856.
    (31) Lin, S. Y.; H. C. Chang; L. W. Lin and P. Y. Huang Rev. Sci. Instrum. 1996, 67, 2852.
    (32) Rotenberg, Y.; Boruvka L.; Neumann, A. W. J. Colloid Interface Sci. 1983, 93, 169.
    (33) Huh, C.; Reed , R. L. J. Colloid Interface Sci. 1983, 91, 472.
    (34) Hsu, C. T.; Shao, M. J.; Lin, S. Y. Langmuir 2000, 16, 3187.
    (35) Hsu, C. T.; Shao, M. J.; Lee, Y. C.; Lin, S. Y. Langmuir 2000, 16, 4846.
    (36) Eastoe, J.; Dalton, J. S.; Rogueda, P. G. A.; Crooks, E. R.; Pitt, A. R.; Simister, E. A. J. Colloid Interface Sci. 1997, 188, 423.
    (37) Ferrari, M.; Liggerieri, L.; Ravera, F. J. Phys. Chem. B 1998, 102, 10521.
    (38) Bendure, R. L. J. Colloid Interface Sci. 1971, 35, 238.
    (39) Joos, P.; Rillaerts, E. J. Colloid Interface Sci. 1980, 79, 96.
    (40) Liggieri, L.; Ferrari, M.; Massa, A.; Francesca, F.; Ravera, F. Colloid Surface A. 1999, 156, 455.
    (41) Chang, C. H.; Hsu, C. T.; Lin, S. Y. Langmuir 1998, 14, 2476.
    (42) Pan, R.; Green, J.; Maldarelli, C. J. Colloid Interface Sci. 1998, 205, 213.
    (43) Miller, R.; Aksenenko, E. V.; Liggerieri, L.; Ravera, F.; Ferrari, M.; Fainerman, V. B. Langmuir 1999, 15, 1328.
    (44) Benjamins, J.; Cagna, A.; Lucassen-Reynders E. H. Colloid Surface A 1996, 114, 245.
    (45) Lucassen-Reynders, E. H.; Cagna, A; Lucassen, Colloid Surf. A 2001, 186, 63.
    (46) Liao, Y. C.; Basaran, O. A.; Franses, E. I. AIChE J. 2003, 49, 3229.
    (47) Furmidge, C. G. L. J. Colloid Sci. 1962, 17, 309.
    (48) Gutoff, E. B.; Kendrick, C. E. AIChE J. 1982, 28, 459.
    (49) Cain, J. B.; Francis, D. W.; Venter, R. D.; Neumann, A. W. J. Colloid Interface Sci. 1983, 94, 123.
    (50) Adamson, A. W. Physical Chemistry of Surfaces 5th Ed.; Wiley, New York, 1990, Chap. 10, p. 389.
    (51) Tsay, R. Y.; Yan, S. C.; Lin, S. Y. Rev. Sci. Instrum. 1995, 66, 5065.
    (52) Kyowa Interface Sci. Co. FACE Contact Angle Meter, model CA-Z, Tokyo, Japan.
    (53) Advanced Surface Tech. Inc. Video Contact Angle System, model VCA 2000, MA.
    (54) CAHN Instruments Inc. Dynamic Contact Angle Analyzer, model DCA-322, CA.
    (55) Dimitrov, A. S.; Kralchevsky, P. A.; Nikolov, A. D.; Noshi, H.; Mtsumoto, M. J. Colloid Interface Sci. 1991, 145, 279.
    (56) Amirfazli, A.; Graham-Eagle, J.; Pennell, S.; Neumann, A. W. Colloids Surfaces A, 2000, 161, 63.
    (57) Graham-Eagle, J.; Pennell, S.; Int. J. Numer. Meth. Fluids, 2000, 32, 851.
    (58) Staicopolus, D. N. J. Colloid Sci. 1962, 17, 439.

    QR CODE