簡易檢索 / 詳目顯示

研究生: 吳篤學
TU-HSUEH WU
論文名稱: 使用氫化非晶鍺薄膜作為鍺晶異質接合鈍化層之研究
Surface passivation of crystalline germanium by intrinsic hydrogenated amorphous germanium thin films and its growth optimization
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
王秋燕
Chiu-Yen Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 99
中文關鍵詞: 表面鈍化氫化非晶矽氫化非晶鍺有效載子生命週期退火異質接合太陽能電池
外文關鍵詞: surface passivation, a-Si:H, a-Ge:H, effective lifetime, annealing, heterojunction solar cell
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對鍺晶低能隙的特性,開發以鍺晶為基板之鍺晶異質接合太陽能電池,研究重點在比較射頻電漿輔助化學氣相沉積氫化非晶矽以及氫化非晶鍺薄膜來鈍化矽晶或鍺晶表面之效果。實驗以反射式高能電子繞射儀觀察非晶薄膜成長於單晶晶片上之臨界結晶溫度,並以少數載子生命周期儀探討晶片之鈍化效果。
    首先在氫化非晶矽薄膜成長於矽晶雙面上的實驗發現,在較快的薄膜成長速率及薄膜臨界結晶溫度曲線附近所沉積之薄膜可以得到較好的鈍化效果。具體條件為當長膜速率1.92 Å/s及基板溫度170℃下,製備氫化非晶矽於矽晶片時可獲得最佳晶片有效載子生命週期達1450 μs,此時另以200℃下對試片進行退火後,載子生命週期甚至可提升至1700μs。另一方面,沉積氫化非晶鍺薄膜於鍺晶的實驗探討發現,當長膜速率為2.3 Å/s及基板溫度為100 ℃下來製備氫化非晶鍺於鍺晶片時,可得到最佳之晶片有效載子生命週期為243 μs。以此條件來製作鍺晶異質接合太陽能電池時,得到電池開路電壓Voc為252 mV、短路電流Jsc為16.9 mA/cm2、填充因子FF為87%、太陽光電轉化效率為4.1%之太陽能電池。


    This study focused on developing high-efficiency solar cells by utilizing Ge wafers that has a lower band gap of ~0.6 eV. Emphasis was placed upon investigating the passivation effect of hydrogenated amorphous layers grown on the surface of crystalline wafers.
    First of all, we found that a better passivation of crystalline Si can be obtained by growing hydrogenated amorphous silicon (a-Si:H) thin layers at higher growth rates and also higher Si substrate surface temperatures. Experimentally it was found that quite a high Si wafer carrier lifetime of 1450 μs was obtained when a-Si:H was grown at a growth rate of 1.92 Å/s and a substrate temperature of 170. This wafer carrier lifetime was further enhanced to 1700 μs after 200℃ annealing. On the other hand, for the passivation of crystalline Ge by hydrogenated amorphous Ge (a-Ge:H), an optimized wafer lifetime of 243 s was obtained when the a-Ge:H thin layers were deposited at a growth rate of 2.3 Å/s and a substrate temperature of 100℃. The Ge heterojunction solar cell fabricated under this condition showed a high conversion ratio of 4.1%, with Voc = 252 mV, Jsc = 16.9 mA/cm2, and FF = 87%.

    摘要 I Abstract II 誌謝 III 目錄… IV 圖索引 VII 表索引 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 第二章 理論基礎 5 2.1 太陽能電池光電轉換原理 5 2.2 薄膜性質 10 2.2-1 非晶矽薄膜性質 10 2.2-2 鍺薄膜性質 17 2.3 矽晶太陽能電池 19 2.4 鍺晶太陽能電池 24 2.5 氫化非晶矽/鍺薄膜(a-Si:H & a-Ge:H)之鍍膜技術 26 2.5-1熱絲化學氣相沉積法(hot-wire chemical vapor deposition)….…………………………………………...28 2.5-2電漿輔助化學氣相沉積法(plasma enhanced chemical vapor deposition) 29 第三章 實驗相關部分 31 3.1實驗裝置 31 3.1-1實驗氣體、基材及藥品 31 3.1-2使用RF-PECVD系統成長本質層 34 3.2 實驗程序 38 3.2-1矽晶基材之清洗 38 3.2-2鍺晶基材之清洗 40 3.2-4 沉積氫化非晶矽、氫化非晶鍺薄膜實驗與量測 42 3.3 分析儀器 43 3.3-1 橢圓偏光儀(Spectroscopic Ellipsometer, SE) 43 3.3-2反射式高能電子繞射儀(reflection high energy electron diffraction, RHEED) 44 3.3-3 載子生命週期量測儀(lifetime tester) 46 3.3-4傅立葉紅外線光譜儀(FTIR) 52 3.3-5拉曼光譜儀(Raman) 59 3.3-6太陽光模擬器(solar simulator) 61 第四章 結果與討論 63 4.1 於矽晶上成長氫化非晶矽薄膜 63 4.2 於鍺晶上成長氫化非晶矽薄膜 74 4.3 於矽晶上成長氫化非晶鍺薄膜 77 4.4 於鍺晶上成長氫化非晶鍺薄膜 83 4.5 鍺晶異質接合太陽能電池的製作 87 第五章 結論與未來展望 92 參考文獻 93

    [1] "Best Research-Cell Efficiencies," National Renewable Energy Laboratory, NREL, 2018.
    [2] EPIA, Global Market Outlook for Photovoltaics until 2018 (2018).
    [3] "Chapter 6: Diodes." Fundamentals of Electrical Engineering. 2nd ed. New York, New York: Oxford UP, 1996. 352-54. Print.
    [4] https://electricalstudy.sarutech.com/p-n-junction-diode/index.html.
    [5] Prof. Dr. Fernando Gehm Moraes “an analysis of the fabrication, characterization and application of academically developed solar cells,”
    [6] M.Stutzmann, D. K.Biegelsen, and R. A.Street, “Detailed investigation of doping in hydrogenated amorphous silicon and germanium,” Phys. Rev. B, vol. 35, no. 11, pp. 15, 1987.
    [7] J.Poortmans, V.Arkhipov, and J.Wiley, “Thin Film Solar Cells Fabrication, Characterization and Applications.”
    [8] H.Shanks, C. J.Fang, L.Ley, M.Cardona, F. J.Demond, and S.Kalbitzer, “Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon,” Phys. status solidi, vol. 100, no. 1, pp. 43–56, Jul.1980.
    [9] M. H.Cohen, H.Fritzsche, andS. R.Ovshinsky, “Simple band model for amorphous semiconducting alloys,” Phys. Rev. Lett., vol. 22, no. 20, pp. 1065–1068, 1969.
    [10] J.Cheol Kim, R. J.Schwartz, and J.Cheol, “Parameter estimation and modeling of hydrogenated amorphous silicon,” 1996.
    [11] Neitzert, H. C., W. Hirsch, and M. Kunst. "Structural changes of a-Si: H films on crystalline silicon substrates during deposition." Physical Review B 47.7 (1993): 4080.
    [12] M. Z.Burrows, U. K.Das, R. L.Opila, S.DeWolf, andR. W.Birkmire, “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 26, no. 4, pp. 683–687, 2008.
    [13] H.Fujiwara and M.Kondo, “Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells,” Appl. Phys. Lett., vol. 90, no. 1, 2007.
    [14] D. L.Staebler and C. R.Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Cit. Appl. Phys. Lett. J. vol. 31, no. 38, pp. 3262–676, 1977.
    [15] H. M.Branz, “Hydrogen collision model: Quantitative description of metastability in amorphous silicon.” Physical Review B 59.8 (1999): 5498.
    [16] W.Peter, "Physics of Solar Cells From Principles to New Concepts." Wiley-VCH, 2005.
    [17] I.Chambouleyron, F.Fajardo, and A.R.Zanatta, “Aluminum-induced crystallization of hydrogenated amorphous germanium thin films,” Appl. Phys. Lett., vol. 79, no. 20, pp. 3233–3235, Nov.2001.
    [18] J. Y. W.Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys., vol. 46, no. 12, pp. 5247–5254, 1975.
    [19] A. S.Keita, Z.Wang, F.Phillipp, E.Bischoff, and E. J.Mittemeijer, “Highly retarded crystallization in hydrogenated amorphous germanium; emergence of a porous nanocrystalline structure,” Thin Solid Films, vol. 615, pp. 145–151, 2016.
    [20] T. P.Drüsedau and B.Schröder, “Recent Progress in Hydrogenated Amorphous Germanium and its Alloys,” Solid State Phenom., vol. 44–46, p. 425, 1995.
    [21] https://www.energytrend.com.tw/research /20170119-14307461.html.
    [22] M. A.Green and M. J.Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovoltaics Res. Appl., vol. 3, no. 3, pp. 189–192, 1995.
    [23] B.Hoex, J. J. H.Gielis, M. C. M.Van DeSanden, and W. M. M.Kessels, “On the surface passivation mechanism by the negative-charge-dielectric Al2O3,” J. Appl. Phys., vol. 1041, no. 10, pp. 113703–40802, 2008.
    [24] N.Balaji, S. Q.Hussain, C.Park, J.Raja, J.Yi, and R.Jeyakumar, “Surface passivation schemes for high-efficiency c-Si solar cells - A review,” Trans. Electr. Electron. Mater., vol. 16, no. 5, pp. 227–233, 2015.
    [25] M. A.Green, K.Emery, Y.Hishikawa, W.Warta, and E. D.Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovoltaics Res. Appl., vol. 24, no. 1, pp. 3–11, Jan.2016.
    [26] Adachi, D., Hernandez, J. L. & Yamamoto, K. Impact of carrier recombination on fill factor for large area heterojunction crystalline Si solar cell with 25.1% efficiency. Appl. Phys. Lett. 107, 233506 (2015).
    [27] D.Adachi, J. L.Hernández, and K.Yamamoto, “Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency,” Appl. Phys. Lett., vol. 107, no. 23, pp. 105–108, 2015.
    [28] M. A.Green, “The path to 25% silicon solar cell efficiency: History of silicon cell evolution,” Prog. Photovoltaics Res. Appl., vol. 17, no. 3, pp. 183–189, May2009.
    [29] K.Yoshikawa, H.Kawasaki, W.Yoshida, T.Irie, K.Konishi, K.Nakano, T.Uto, D.Adachi, M.Kanematsu, H.Uzu, and K.Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy, vol. 2, no. 5, pp.17032, 2017.
    [30] J.Zhao, A.Wang, and M. A.Green, “24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates,” Prog. Photovoltaics Res. Appl., vol. 7, no. 6, pp. 471–474, Nov.1999.
    [31] F.Werner, J.Schmidt, D.Zielke, J. H.Petermann, F.Werner, B.Veith, R.Brendel, and J.Schmidt, “21.7% efficient PERC solar cells with AlOx tunneling layer." Proceedings of 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany. pp. 5-6, 2011.
    [32] A.Richter, M.Hoteis, J.Benick, S.Henneck, M.Hermle, and S. W.Glunz, “Towards industrially feasible high-efficiency n-type Si solar cells with boron-diffused front side emitter - combining firing stable Al2O3 passivation and fine-line printing,” in 2010 35th IEEE Photovoltaic Specialists Conference, 2010, pp. 3587–3592.
    [33] M.Taguchi, A.Yano, S.Tohoda, K.Matsuyama, Y.Nakamura, T.Nishiwaki, K.Fujita, and E.Maruyama, “24.7% Record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovoltaics, vol. 4, no. 1, pp. 96–99, 2014.
    [34] B.Hekmatshoar, D.Shahrjerdi, and M.Hopstaken, “High-efficiency heterojunction solar cells on crystalline germanium substrates,” Oxide-based Materials and Devices V. Vol. 8987. International Society for Optics and Photonics, pp. 898722, 2014.
    [35] R. R.King, D.Bhusari, D.Larrabee, X.-Q.Liu, E.Rehder, K.Edmondson, H.Cotal, R. K.Jones, J. H.Ermer, C. M.Fetzer, D. C.Law, and N. H.Karam, “Solar cell generations over 40% efficiency,” Prog. Photovoltaics Res. Appl., vol. 20, no. 6, pp. 801–815, Sep.2012.
    [36] N. E.Posthuma, J.van derHeide, G.Flamand, and J.Poortmans, “Emitter formation and contact realization by diffusion for germanium photovoltaic devices,” IEEE Trans. Electron Devices, vol. 54, no. 5, pp. 1210–1215, 2007.
    [37] B.Hekmatshoar, D.Shahrjerdi, M.Hopstaken, K.Fogel, and D. K.Sadana, “High-efficiency heterojunction solar cells on crystalline germanium substrates,” Appl. Phys. Lett., vol. 101, no. 3, 2012.
    [38] H. O.Pierson, Handbook of chemical vapor deposition : principles, technology, and applications. Noyes Publications, William Andrew, 1999.
    [39] D.Muñoz, C.Director, :Cristóbal, and V.Sánchez, “Silicon heterojunction solar cells obtained by Hot-Wire CVD.” Universitat Politècnica de Catalunya, 2008.
    [40] 連水養, 吳秉叡, 毛信元, 武東星, “氫氣在熱燈絲CVD沉積多晶矽薄膜成長機制之影響,” 真空科技, vol. 19, no. 3, pp. 113–117, Dec.2006.
    [41] Street, R. A. (2005). Hydrogenated amorphous silicon. Cambridge University Press.
    [42] “http://www.jaist.ac.jp/ms/labs/handoutai/matsumura-lab/matsumura/english/catcvd.html.
    [43] 陳林震, “電漿沉積氫化非晶矽/鍺薄膜於單晶矽/鍺晶片上的磊晶臨界溫度之研究,” 2017.
    [44] T.Krajangsang, S.Inthisang, A.Dousse, A.Moollakorn, A.Hongsingthong, S.Kittisontirak, P.Chinnavornrungsee, A.Limmanee, J.Sritharathikhun, and K.Sriprapha, “Band gap profiles of intrinsic amorphous silicon germanium films and their application to amorphous silicon germanium heterojunction solar cells,” Opt. Mater. (Amst)., vol. 51, pp. 245–249, 2016.
    [45] J. C.Vickerman, I. S. (Ian S.Gilmore, andWiley InterScience (Online service), Surface analysis : the principal techniques. John Wiley & Sons, 2009.
    [46] L. T.Innovation, “SINTON WCT120 - User Manual,” SpringerReference, vol. 134113, 2008.
    [47] R. A.Sinton and A.Cuevas, “Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data,” Appl. Phys. Lett., vol. 69, no. 17, p. 2510, Aug.1998.
    [48] D.Macdonald, R. A.Sinton, and A.Cuevas, “On the use of a bias-light correction for trapping effects in photoconductance-based lifetime measurements of silicon,” J. Appl. Phys., vol. 89, no. 5, pp. 2772–2778, Mar.2001.
    [49] M. H.Srodsky, M.Cardona, and J. J.Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” vol. 16, pp 3556, 1977.
    [50] S.AlHazmy, “Hydrogen Bonding in Hydrogenated Amorphous Germanium *,” vol. 9, no. 2, pp. 177–180, 2004.
    [51] D.Jousse, E.Bustarret, and F.Boulitrop, “Disorder and defects in sputtered a-SiH from subgap absorption measurements,” State Commun., vol. 55, no. 5, p. 985.
    [52] E.Bianco, S.Butler, S.Jiang, O. D.Restrepo, W.Windl, and J. E.Goldberger, “Stability and exfoliation of germanane: A germanium graphane analogue,” ACS Nano, vol. 7, no. 5, pp. 4414–4421, 2013.
    [53] J.Stuke andW.Brenig, Amorphous and liquid semiconductors; proceedings. Taylor & Francis, 1974.
    [54] W.Paul, G. A. N.Connell, and R. J.Temkin, “Amorphous germanium I. A model for the structural and optical properties,” Adv. Phys., vol. 22, no. 5, pp. 531–580, Sep.1973.
    [55] A. A.Langford, M. L.Fleet, B. P.Nelson, W. A.Lanford, and N.Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon,” Phys. Rev. B, vol. 45, pp. 15, 1992.
    [56] L.Zanzig, W.Beyer, and H.Wagner, “High quality hydrogenated amorphous germanium prepared by the hot wire technique,” Appl. Phys. Lett., vol. 67, no. 11, pp. 1567–1569, Sep.1995.
    [57] A.Matsuda, M.Takai, T.Nishimoto, and M.Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate,” Sol. Energy Mater. Sol. Cells, vol. 78, no. 1–4, pp. 3–26, 2003.
    [58] http://www.semiconductors.co.uk/propiviv5431.htm.
    [59] C.Fang, K.Gruntz, and L.Ley, “The hydrogen content of a-Ge: H and a-Si: H as determined by IR spectroscopy, gas evolution and nuclear reaction techniques,” J. Non. Cryst. Solids, vol. 36, pp. 255–260, 1980.
    [60] N.Maley, “Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous silicon alloys,” Phys. Rev., vol. 8, pp. 15–1992.
    [61] M. K.Bhan, L. K.Malhotra, and S. C.Kashyap, “Electrical and optical properties of hydrogenated amorphous silicon-germanium (a-Si 1-x Ge x : H) films prepared by reactive ion beam sputtering,” Cit. J. Appl. Phys., vol. 66, p. 2528, 1989.
    [62] V.Steenhoff, M.Juilfs, R. E.Ravekes, M.Vehse, and C.Agert, “Resonant-cavity-enhanced a-Ge:H nanoabsorber solar cells for application in multijunction devices,” Nano Energy, vol. 27, no. August, pp. 658–663, 2016.
    [63] C.Iliescu and B.Chen, “Thick and low-stress PECVD amorphous silicon for MEMS applications,” J. Micromechanics Microengineering, vol. 18, no. 1, p. 15-24, Jan.2008.
    [64] A.Matsuda, M.Takai, T.Nishimoto, and M.Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate,” Sol. Energy Mater. Sol. Cells, vol. 78, no. 1–4, pp. 3–26, Jul.2003.
    [65] X.Dai, H.Cai, D.Zhang, G.Chen, Y.Wang, W.Liu, and Y.Sun, “Annealing induced amorphous/crystalline silicon interface passivation by hydrogen atom diffusion,” J. Mater. Sci. Mater. Electron., vol. 27, no. 1, pp. 705–710, 2016.
    [66] H.Meddeb, T.Bearda, Y.Abdelraheem, H.Ezzaouia, I.Gordon, J.Szlufcik, and J.Poortmans, “Structural, hydrogen bonding and in situ studies of the effect of hydrogen dilution on the passivation by amorphous silicon of n-type crystalline (1 0 0) silicon surfaces,” J. Phys. D. Appl. Phys., vol. 48, no. 41, p. 415301, 2015.
    [67] M.Cardona, “Vibrational Spectra of Hydrogen in Silicon and Germanium,” Phys. status solidi, vol. 118, no. 2, pp. 463–481, Aug.1983.
    [68] 吳佳盈, “以射頻電漿輔助化學氣相沉積法製備高效率矽晶異質接合太陽能電池之研究,” 2011.
    [69] 吳俊諭, “矽晶/鍺晶異質接合及晶片黏合技術之研究,” 2017.

    無法下載圖示 全文公開日期 2023/09/14 (校內網路)
    全文公開日期 2028/09/14 (校外網路)
    全文公開日期 2028/09/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE