簡易檢索 / 詳目顯示

研究生: 林珈民
Chia-min Lin
論文名稱: 表面改質聚甲基丙烯酸甲酯假牙基底材料以增進拉伸強度與抗沾黏效率
Surface modification of acrylic denture material for improvement of tensile strength and antifouling efficiency
指導教授: 王孟菊
Meng-jiy Wang
口試委員: 劉懷勝
Hwai-shen Liu
廖文堅
Wen-chien Liao
葉昀昇
Yun-shen Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 70
中文關鍵詞: 表面改質電漿處理拉伸強度抗沾黏假牙
外文關鍵詞: surface modification, plasma treatment, adhesion force, antifouling, denture
相關次數: 點閱:390下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 假牙材料常見的問題有 (1) 假牙基底材料與軟內襯間黏著力不足,(2) 口腔微生物在假牙材料表面的生長。本研究利用聚甲基丙烯酸甲酯 (polymethyl methacrylate, PMMA)基底的熱固式假牙基底層 (Luctione 199) 以及矽橡膠 (silicone rubber) 基底的熱聚式軟內襯 (Molloplast B) 為實驗材料,並利用射頻電漿系統、多巴胺 (polydopamine) 塗佈和聚乙二醇 (polyethylene glycol, PEG) 改質基材表面,觀察表面性質對於拉伸強度測試以及抗沾黏效率試驗。電漿改質選用氧氣電漿,利用氧氣電漿處理基材表面,可引入含氧官能基,使得材料表面的水濕性提高,水濕性的提高有利於多巴胺塗佈層的吸附量;多巴胺層在本研究所扮演的角色為黏著劑的角色,不論拉伸強度測試與抗沾黏試驗均有存在之必要;抗沾黏高分子選用聚乙二醇,利用聚乙二醇的彈性直鏈重複單體特性,可以將欲貼附於材料表面的生物分子有效的排斥在外,創造出低生物沾黏表面。本研究使用聚乙二醇塗佈於多巴胺改質表面的材料上,可使得改質過後的材料表面與未以多巴胺塗佈的表面比較,抗細胞貼附效率可以提高。
    在拉伸強度測試中,探討不同時間氧氣電漿處理假牙基底層表面對於拉伸強度的影響,發現長時間氧氣電漿處理的表面具有較強的拉伸強度,約可上升20.4 %;多巴胺塗佈於氧氣電漿前處理材料表面,可以使得假牙組黏著強度上升約26.5 %;在抗沾黏試驗中,以細胞貼附測試得知,多巴胺吸附的量與表面聚乙二醇有效吸附量有明顯關係,在聚乙二醇吸附於具有多巴胺以及氧氣電漿前處理表面,抗細胞貼附量可達26.3 %。此外,在抗沾黏表面製備部分,本研究也使用戊二醛 (glutaraldehyde )製備交聯聚乙二醇並塗佈於多巴胺及氧氣電漿前處理表面,另外以化學接枝法接枝聚乙二醇於假牙基底層表面,抗沾黏效率分別可以高達47.8 %和60.9 %。


    The aims of this study were to improve the adhesion between heat-polymerization denture based material (Luctione 199) and heat-curing soft lining (Molloplast B) and to incorporate anti-fouling properties on the denture based surfaces. The most essential issues for denture materials are the bonding between denture based material and soft lining, and the formation of biofilm from microorganisms in oral. In this study, surface modification methods were used including plasma treatments, polydopamine coating, and polyethylene glycol (PEG) coating. Oxygen was chosen as a plasma gas for introduction of oxygen containing functional groups to increase the surface wettability which facilitated the following adsorption of polydopamine. PEG with elastic repeated unit which repels bimolecular was used as the antifouling polymer. In this study, PEG coating on polydopamine attached surface revealed higher antifouling effects in comparison with the surfaces without the polydopamine coating.
    For tensile strength tests, the surfaces treated with oxygen plasma for longer period revealed 20.4 % improvement on the tensile strength. The polydopamine coating further increased the tensile strength 26.5 % in comparing with the pristine sample. The incorporation of PEG showed effects on inhiniting the adhesion of L-929 fibroblasts. Both increase the amount of PEG and the addition of crosslinker assisted the increase of anti-fouling effects up to 47.8 %. Finally, the chemical grafting of PEG on denture based material showed the highest antifouling efficiency with 60.9 %.

    摘要 i 主目錄 iv 圖目錄 vii 第一章 序論 1 1.1. 前言 1 1.2. 動機與目的 1 第二章 文獻回顧 4 2.1. 假牙功能 4 2.1.1. 假牙基底層特色 5 2.1.2. 軟內襯 5 2.2. 拉伸方法和數據量化 6 2.2.1. 軟內襯本質對拉伸性質影響 7 2.2.2. 表面粗糙度對拉伸影響 8 2.2.3. 化學鍵結對拉伸影響 8 2.3. 製備抗沾黏材料表面之動機 8 2.3.1. 抗沾黏定義 9 2.3.2. 抗沾黏高分子-聚乙二醇 (polyethylene glycol, PEG) 10 2.3.3. 假牙基底層表面改質與抗沾黏測試 11 2.3.4. 化學接枝法mPEG於生醫材料表面 13 2.4. 電漿技術 13 2.4.1. 電漿改質 14 第三章 實驗流程與材料 16 3.1. 假牙材料製備 16 3.1.1. 假牙基底層材料製備 16 3.1.2. 軟內襯材料製備 17 3.1.4. 抗沾黏測試 18 3.1.5. 多巴胺塗怖 19 3.1.6. 抗沾黏高分子塗佈 19 3.1.7. 電漿處理 20 3.1.8. 配置不同pH值得戊二醛交鏈聚乙二醇 20 3.1.9. 化學接枝法,mPEG接枝於假牙基底層表面 21 3.1.10. 細胞培養 23 3.2. 儀器與設備 24 3.3. 藥品編號 25 3.4. 儀器設備 26 3.4.1. 接觸角測量 (contact angle) 26 3.4.2. 傅立葉轉換紅外線光譜儀 (FTIR) 27 3.4.3. X-射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 27 3.4.4. 原子力顯微鏡 (Atomic force microscopy, AFM) 27 3.4.5. 掃瞄式電子顯微鏡 (scanning electron microscopy) 27 3.4.6. 核磁共振儀 (Nuclear Magnetic Resonance, NMR) 27 第四章 結果與討論 28 4.1. 增加表面粗糙度改質假牙基底層之表面特性研究 28 4.1.1. 接觸角測量 28 4.1.2. 拉伸強度測試 29 4.2. 不同多巴胺塗佈時間於不同電漿氣體前處理假牙基底層材料之特性研 究 30 4.2.1. 拉伸強度測試 30 4.2.2. 多巴胺塗佈於不同電漿氣體前處理於假牙基底層材料表面之特性研究 31 4.2.2.1. 拉伸強度測試 31 4.3. 氧氣電漿前處理、多巴胺與聚乙二醇塗佈於假牙基底層材料表面之特性 研究 32 4.3.1. 接觸角測量 32 4.3.2. 拉伸強度測試 33 4.3.3. 細胞貼附影響 34 4.4. 氧氣電漿前處理、多巴胺塗佈與聚乙二醇塗佈於假牙基底層材料參數最 適化研究 35 4.4.1. 氧氣電漿前處理層最適化處理功率之特性研究 35 4.4.2. 聚乙二醇塗佈於氧氣電漿改質後塗佈多巴胺,多巴胺層最適化濃度研究 38 4.4.3. 抗沾黏高分子塗佈於氧氣電漿改質後塗佈多巴胺最適化濃度探討 39 4.5. 抗細胞貼附最適化條件改質假牙基底層表面以增強假牙組黏著力之研 究 42 4.5.1. 拉伸強度測試 43 4.5.2. SEM表面分析 43 4.6. 抗細胞貼附最適化條件改質假牙基底層表面以增強假牙組黏著力之研 究 47 4.6.1. 拉伸強度測試 47 4.6.2. 機械性質穩定度測試 47 4.7. 氧氣電漿處理假牙基底層表面特性之研究 48 4.7.1. 接觸角測量 48 4.7.2. XPS分析 49 4.7.3. 拉伸強度測試 50 4.8. 不同交聯方法交聯聚乙二醇表面特性之研究 51 4.8.1. 接觸角測量 51 4.8.2. 細胞貼附行為 52 4.9. 不同pH值配乙二醇水溶液並以戊二醛交聯之影響 53 4.9.1. 接觸角測量 54 4.9.2. 細胞貼附行為 54 4.10. 化學接枝法接枝mPEG於假牙基底層材料表面特性之研究 55 4.10.1. 假牙基底層以還原劑氫化鋁鋰表面改質表面分析 56 4.10.2. mPEG修飾分析,H1 NMR圖譜分析 57 4.10.3. 接觸角測量 58 4.10.4. XPS分析 59 4.10.5. 細胞貼附行為 60 第五章 結論 62 5.1. 假牙基底層與軟內襯黏著力之拉伸測試 62 5.2. 抗沾黏效率測試 62 5.3. 結合高拉伸強度與抗沾黏表面 63 圖目錄 圖 1 1. 活動式假牙示意圖 5 圖 1 2. 剝落強度測試示意圖(peel strength test) [28] 6 圖 1 3. 拉伸強度測試示意圖 (tensile strength test) [30] 7 圖 1 4. 生物沾黏的分子,尺表上方為生物藥學應用相關的細胞與蛋白質,尺表下方為海洋生物尺寸 [37]。 10 圖 1 5. 聚乙二醇抗沾黏反應機制 [46] 11 圖 1 6. 聚乙二醇化學結構式 11 圖 1 7. 氬氣電漿交聯聚乙二醇示意圖 [68] 14 圖 3 1. 拉伸模具設計圖 18 圖 3 2. 拉伸測試樣品示意圖 18 圖 3 3. 抗沾黏模具設計圖 19 圖 3 4. 射頻電漿系統示意圖 20 圖 3 5. 聚乙二醇以戊二醛交聯反應式 21 圖 3 6. 假牙基底層以氫化鋁鋰還原反應式 21 圖 3 7. mPEG改質反應式 22 圖 3 8. 化學接枝mPEG於假牙材料基底層 22 圖 4 1. 多巴胺塗佈於不同號數砂紙研磨處理表面之接觸角 29 圖 4 2. 多巴胺塗佈於不同號數砂紙研磨處理表面之拉伸強度 30 圖 4 3. 不同多巴胺塗佈時間於假牙基底層表面對於拉伸強度影響 31 圖 4 4. 多巴胺塗佈於不同電漿氣體前處理的假牙基底層表面之拉伸強度 32 圖 4 5. 不同組成層假牙基底層表面改質之接觸角 33 圖 4 6. 不同組成層假牙基底層表面改質之拉伸強度 34 圖 4 7. 聚乙二醇吸附於不同處理表面 (1)對照組,(2)物理吸附,(3)氧氣電漿前處理,(4)多巴胺預塗佈,(5)多巴胺塗佈於氧氣電漿前處理表面,細胞貼附行為的影響 35 圖 4 8. 不同功率氧氣電漿處理假牙基底層表面之接觸角 36 圖 4 9. 多巴胺塗佈於不同氧氣電漿處理改質的假牙基底層表面之接觸角 36 圖 4 10. 聚乙二醇吸附於不同氧氣電漿參數前處理的多巴胺層,細胞貼附行為 37 圖 4 11. 多巴胺吸附於不同功率氧氣電漿處理表面之XPS寬掃瞄圖譜 38 圖 4 12. 聚乙二醇塗佈於氧氣電漿前處理之不同濃度多巴胺層,細胞貼附行為 39 圖 4 13. 不同濃度聚乙二醇吸附於氧氣電漿和多巴胺前處理表面之表面官能基分析 40 圖 4 14. 不同濃度PEG塗佈於氧氣電漿和多巴胺前處理表面,細胞貼附行為 41 圖 4 15. 不同濃度之聚乙烯吡咯烷酮分子吸附於氧氣電漿和多巴胺前處理表面之表面官能基分析 41 圖 4 16. 不同濃度PNVP塗佈於氧氣電漿和多巴胺前處理表面,細胞貼附行為 42 圖 4 17. 市售黏著劑 (primer) 輿實驗設計改質方法:多巴胺塗佈於氧氣電漿前處理層 (O2_PDOPA)和聚乙二醇塗佈於氧氣電漿和多巴胺前處理(O2_PDOPA_PEG)表面,比較拉伸強度 43 圖 4 18. 不同表面拉伸測試前之表面型態,(a)control,(b) O2 treated,(c) O2_PDOPA,和 (d) O2_PDOPA_PEG 45 圖 4 19. 不同表面拉伸測試後之表面型態,(a) control,(b) O2 treated,(c) O2_PDOPA,和 (d) O2_PDOPA_PEG 46 圖 4 20. 應用抗細胞貼附最佳化參數於拉伸強度測試 47 圖 4 21. 以氧氣電漿和多巴胺改質的假牙組,浸泡於去離子水不同天數後進行拉伸強度測試 48 圖 4 22. 不同氧氣電漿處理時間改質假牙基底層表面之接觸角 49 圖 4 23. 不同氧氣電漿處理時間改質假牙基底層的寬掃描結果 50 圖 4 24. 不同氧氣電漿處理時間改質假牙基底層表面拉伸強度測試 51 圖 4 25. 不同方法交聯聚乙二醇:(1) 對照組,(2) 未交聯的聚乙二醇,(3) 以氬氣電漿交聯聚乙二醇和 (4) 以戊二醛交聯聚乙二醇 52 圖 4 26. 不同交聯方法交聯聚乙二醇對於細胞貼附影響 53 圖 4 27. 不同pH值下添加戊二醛交聯聚乙二醇之表面接觸角 54 圖 4 28. 不同pH值聚乙二醇溶液添加戊二醛交聯密度對細胞貼附影響 55 圖 4 29. ATR-FTIR分析以氫化鋁鋰還原假牙基底層材料前後之表面官能基鑑定 57 圖 4 30. H1 NMR圖譜分析 (a) mPEG,(b) mPEG-COOH,(c) mPEG-COCl 58 圖 4 31. 假牙基底層以氫化鋁鋰改質前後以及mPEG接枝於假牙基底層材料表面後的接觸角 59 圖 4 32. 以氫化鋁鋰改質前 (PMMA) 和後 (PMMA-OH),以及聚乙二醇接枝於假牙基底層表面 (PMMA-g-mPEG) 之XPS寬掃瞄結果 60 圖 4 33. 化學接枝mPEG於假牙基底層材料表面,細胞貼附行為 61 表目錄 表 1. 多巴胺吸附於不同功率氧氣電漿處理表面之元素組成 38 表 2. 不同氧氣電漿處理時間改質假牙基底層的表面元素組成 50 表 3. 不同交聯方法交聯聚乙二醇之抗細胞貼附效率 53 表 4. 在不同pH值的聚乙二醇溶液中添加戊二醛交聯,抗沾黏效率 55 表 5. 假牙基底層以氫化鋁鋰改質前後及聚乙二醇接枝於假牙基底層表面之元素組成 60

    [1] Polyzois GL, Frangou MJ. Influence of curing method, sealer, and water storage on the hardness of a soft lining material over time. Journal of Prosthodontics. 2001;10:42-5.
    [2] McCabe JF, Carrick TE, Kamohara H. Adhesive bond strength and compliance for denture soft lining materials. Biomaterials. 2002;23:1347-52.
    [3] Murata H, Kawamura M, Hamada T, Saleh S, Kresnoadi U, Toki K. Dimensional stability and weight changes of tissue conditioners. Journal of Oral Rehabilitation. 2001;28:918-23.
    [4] Murata H, Hamada T, Harshini, Toki K, Nikawa H. Effect of addition of ethyl alcohol on gelation and viscoelasticity of tissue conditioners. Journal of Oral Rehabilitation. 2001;28:48-54.
    [5] Hatamleh MM, Watts DC. Mechanical properties and bonding of maxillofacial silicone elastomers. Dental Materials. 2010;26:185-91.
    [6] Pesun IJ, Hodges J, Lai JH. Effect of finishing and polishing procedures on the gap width between a denture base resin and two long-term, resilient denture liners. The Journal of Prosthetic Dentistry. 2002;87:311-8.
    [7] Ribeiro Pinto JR, Mesquita MF, de Arruda Nobilo MA, Elias Pessanha Henriques G. Evaluation of varying amounts of thermal cycling on bond strength and permanent deformation of two resilient denture liners. The Journal of Prosthetic Dentistry. 2004;92:288-93.
    [8] Waite JH, Qin X. Polyphosphoprotein from the Adhesive Pads of Mytilus edulis†. Biochemistry. 2001;40:2887-93.
    [9] Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, et al. Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles. Journal of the American Chemical Society. 2004;126:9938-9.
    [10] Chalian VA, Phillips RW. Materials in maxillofacial prosthetics. Journal of Biomedical Materials Research. 1974;8:349-63.
    [11] Tanimoto Y, Saeki H, Kimoto S, Nishiwaki T, Nishiyama N. Evaluation of adhesive properties of three resilient denture liners by the modified peel test method. Acta Biomaterialia. 2009;5:764-9.
    [12] Kulak-Ozkan Y, Sertgoz A, Gedik H. Effect of thermocycling on tensile bond strength of six silicone-based, resilient denture liners. The Journal of Prosthetic Dentistry. 2003;89:303-10.
    [13] Silva-Lovato CH, Wever Bd, Adriaens E, Paranhos HdFO, Watanabe E, Pisani MX, et al. Clinical and antimicrobial efficacy of NitrAdineTM-based disinfecting cleaning tablets in complete denture wearers. Journal of Applied Oral Science. 2010;18:560-5.
    [14] Morgan TD, Wilson M. The effects of surface roughness and type of denture acrylic on biofilm formation by Streptococcus oralis in a constant depth film fermentor. Journal of Applied Microbiology. 2001;91:47-53.
    [15] Hirota K, Murakami, Keiji, Nemoto, Ken, Miyake Y. Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS Microbiology Letters. 2005;248:37-45.
    [16] Jagger DC, Jagger RG, Allen SM, Harrison A. An investigation into the transverse and impact strength of `high strength' denture base acrylic resins. Journal of Oral Rehabilitation. 2002;29:263-7.
    [17] Hakan Akın FT, Burcu Mutaf, Umit Guney, Ali K Ozdemir. Effect of sandblasting with different size of aluminum oxide particles on tensile bond strength of resilient liner to denture base. Cumhuriyet Dental Joural. 2011;2011.
    [18] Zhang H, Fang J, Hu Z, Ma J, Han Y, Bian J. Effect of oxygen plasma treatment on the bonding of a soft liner to an acrylic resin denture material. Dental Materials Journal. 2010;29:398-402.
    [19] Wright PS. Characterization of the Adhesion of Soft Lining Materials to Poly (methyl methacrylate). Journal of Dental Research. 1982;61:1002-5.
    [20] Ozdemir KG, Y H, inodot, lmaz, Y S. In vitro evaluation of cytotoxicity of soft lining materials on L929 cells by MTT assay. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2009;90B:82-6.
    [21] Hayakawa I, Keh E-S, Morizawa M, Muraoka G, Hirano S. A new polyisoprene-based light-curing denture soft lining material. Journal of Dentistry. 2003;31:269-74.
    [22] Mese A, Guzel KG. Effect of storage duration on the hardness and tensile bond strength of silicone- and acrylic resin-based resilient denture liners to a processed denture base acrylic resin. The Journal of Prosthetic Dentistry. 2008;99:153-9.
    [23] Can G, Ozdemir T, Usanmaz A. Effect of thermocycling and treatment with monomer on mechanical properties of soft denture liner Molloplast B. International Journal of Adhesion and Adhesives. 2009;29:812-4.
    [24] Taft RM, Cameron SM, Knudson RC, Runyan DA. The effect of primers and surface characteristics on the adhesion-in-peel force of silicone elastomers bonded to resin materials. The Journal of Prosthetic Dentistry. 1996;76:515-8.
    [25] Machado AL, Breeding LC, Puckett AD. Effect of microwave disinfection on the hardness and adhesion of two resilient liners. The Journal of Prosthetic Dentistry. 2005;94:183-9.
    [26] Sertgoz A, Kulak Y, Ged H, #x00690307, Taskonak B. The effect of thermocycling on peel strength of six soft lining materials. Journal of Oral Rehabilitation. 2002;29:583-7.
    [27] Hatamleh MM, Watts DC. Fibre reinforcement enhances bonding of soft lining to acrylic dental and maxillofacial prostheses. The European journal of prosthodontics and restorative dentistry. 2008;16:116-21.
    [28] Hatamleh MM, Watts DC. Bonding of maxillofacial silicone elastomers to an acrylic substrate. Dental Materials. 2010;26:387-95.
    [29] Usumez A, Inan O, Aykent F. Bond strength of a silicone lining material to alumina-abraded and lased denture resin. Journal of Biomedical Materials Research - Part B Applied Biomaterials. 2004;71:196-200.
    [30] Pisani MX, Silva-Lovato CH, Malheiros-Segundo ADL, MacEdo AP, Paranhos HFO. Bond strength and degree of infiltration between acrylic resin denture liner after immersion in effervescent denture cleanser. Journal of Prosthodontics. 2009;18:123-9.
    [31] Waters MGJ, Jagger RG, Polyzois GL. Wettability of silicone rubber maxillofacial prosthetic materials. The Journal of Prosthetic Dentistry. 1999;81:439-43.
    [32] Bellamy K, Limbert G, Waters MG, Middleton J. An elastomeric material for facial prostheses: synthesis, experimental and numerical testing aspects. Biomaterials. 2003;24:5061-6.
    [33] Kawano F, Dootz ER, Koran Iii A, Craig RG. Comparison of bond strength of six soft denture liners to denture base resin. The Journal of Prosthetic Dentistry. 1992;68:368-71.
    [34] Kurtulmus H, Kumbuloglu O, Ozcan M, Ozdemir G, Vural C. Candida albicans adherence on silicone elastomers: Effect of polymerisation duration and exposure to simulated saliva and nasal secretion. Dental Materials. 2010;26:76-82.
    [35] Park SE, Periathamby AR, Loza JC. Effect of surface-charged poly(methyl methacrylate) on the adhesion of Candida albicans1. Journal of Prosthodontics. 2003;12:249-54.
    [36] Klotz SA, Drutz DJ, Zajic JE. Factors governing adherence of Candida species to plastic surfaces. Infect Immun. 1985;50:97-101.
    [37] Magin CM, Cooper SP, Brennan AB. Non-toxic antifouling strategies. Materials Today. 2010;13:36-44.
    [38] Bergkvist M, Carlsson J, Oscarsson S. Surface-dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studied with use of Atomic Force Microscopy. Journal of Biomedical Materials Research Part A. 2003;64A:349-56.
    [39] Dalsin JL, Messersmith PB. Bioinspired antifouling polymers. Materials Today. 2005;8:38-46.
    [40] Ratner BD. The blood compatibility catastrophe. Journal of Biomedical Materials Research. 1993;27:283-7.
    [41] Wisniewski N, Reichert M. Methods for reducing biosensor membrane biofouling. Colloids and Surfaces B: Biointerfaces. 2000;18:197-219.
    [42] Bryers JD. Biofilms and the technological implications of microbial cell adhesion. Colloids and Surfaces B: Biointerfaces. 1994;2:9-23.
    [43] Zhang SF, Rolfe P, Wright G, Lian W, Milling AJ, Tanaka S, et al. Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylcholine head group. Biomaterials. 1998;19:691-700.
    [44] Tziampazis E, Kohn J, Moghe PV. PEG-variant biomaterials as selectively adhesive protein templates: model surfaces for controlled cell adhesion and migration. Biomaterials. 2000;21:511-20.
    [45] Dong B, Manolache S, Somers EB, Lee Wong AC, Denes FS. Generation of antifouling layers on stainless steel surfaces by plasma-enhanced crosslinking of polyethylene glycol. Journal of Applied Polymer Science. 2005;97:485-97.
    [46] Kang G, Liu M, Lin B, Cao Y, Yuan Q. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol). Polymer. 2007;48:1165-70.
    [47] Sofia SJ, Premnath V, Merrill EW. Poly(ethylene oxide) Grafted to Silicon Surfaces: Grafting Density and Protein Adsorption. Macromolecules. 1998;31:5059-70.
    [48] Holmberg K, Tiberg F, Malmsten M, Brink C. Grafting with hydrophilic polymer chains to prepare protein-resistant surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1997;123-124:297-306.
    [49] Unsworth LD, Sheardown H, Brash JL. Protein Resistance of Surfaces Prepared by Sorption of End-Thiolated Poly(ethylene glycol) to Gold:  Effect of Surface Chain Density. Langmuir. 2005;21:1036-41.
    [50] Taite LJ, Yang P, Jun H-W, West JL. Nitric oxide-releasing polyurethane–PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2008;84B:108-16.
    [51] Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L. Covalent Attachment of Poly(ethylene glycol) to Surfaces, Critical for Reducing Bacterial Adhesion. Langmuir. 2003;19:6912-21.
    [52] Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends in Microbiology. 2001;9:327-35.
    [53] Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, et al. Antifungal Resistance of Candidal Biofilms Formed on Denture Acrylic in vitro. Journal of Dental Research. 2001;80:903-8.
    [54] Yildirim MS, HasanreİSoǦLu U, Hasirci N, Sultan N. Adherence of Candida albicans to glow-discharge modified acrylic denture base polymers. Journal of Oral Rehabilitation. 2005;32:518-25.
    [55] Lee H, Jeong JH, Park TG. PEG grafted polylysine with fusogenic peptide for gene delivery: high transfection efficiency with low cytotoxicity. Journal of Controlled Release. 2002;79:283-91.
    [56] Rostin J, Smeds A-L, Akerblom E. B-Domain Deleted Recombinant Coagulation Factor VIII Modified with Monomethoxy Polyethylene Glycol. Bioconjugate Chemistry. 2000;11:387-96.
    [57] Wu Y, Liu C, Zhao X, Xiang J. A new biodegradable polymer: PEGylated chitosan-g-PEI possessing a hydroxyl group at the PEG end. Journal of Polymer Research. 2008;15:181-5.
    [58] Chacon D, Hsieh YL, Kurth MJ, Krochta JM. Swelling and protein absorption/desorption of thermo-sensitive lactitol-based polyether polyol hydrogels. Polymer. 2000;41:8257-62.
    [59] Wang L, Wang S, Bei Jz. Synthesis and characterization of macroinitiator-amino terminated PEG and poly(γ-benzyl-L-glutamate)-PEO-poly(γ-benzyl-L-glutamate) triblock copolymer. Polymers for Advanced Technologies. 2004;15:617-21.
    [60] Aronov O, Horowitz AT, Gabizon A, Gibson D. Folate-Targeted PEG as a Potential Carrier for Carboplatin Analogs. Synthesis and in Vitro Studies. Bioconjugate Chemistry. 2003;14:563-74.
    [61] Yu Q, Zhang Y, Wang H, Brash J, Chen H. Anti-fouling bioactive surfaces. Acta Biomaterialia. 2011;7:1550-7.
    [62] Sharma S, Johnson RW, Desai TA. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosensors and Bioelectronics. 2004;20:227-39.
    [63] Fan X, Lin L, Dalsin JL, Messersmith PB. Biomimetic Anchor for Surface-Initiated Polymerization from Metal Substrates. Journal of the American Chemical Society. 2005;127:15843-7.
    [64] Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science. 2007;32:698-725.
    [65] Shi L-S, Wang L-Y, Wang Y-N. The investigation of argon plasma surface modification to polyethylene: Quantitative ATR-FTIR spectroscopic analysis. European Polymer Journal. 2006;42:1625-33.
    [66] Shen H, Hu X, Yang F, Bei J, Wang S. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide). Biomaterials. 2007;28:4219-30.
    [67] Desai SM, Singh RP. Surface Modification of Polyethylene. In: Albertsson A-C, editor. Long Term Properties of Polyolefins: Springer Berlin / Heidelberg; 2004. p. 231-94.
    [68] Wang P, Tan KL, Kang ET, Neoh KG. Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. Journal of Membrane Science. 2002;195:103-14.
    [69] Youngblood JP, McCarthy TJ. Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma. Macromolecules. 1999;32:6800-6.
    [70] Woodward I, Schofield WCE, Roucoules V, Badyal JPS. Super-hydrophobic Surfaces Produced by Plasma Fluorination of Polybutadiene Films. Langmuir. 2003;19:3432-8.
    [71] Dong B, Jiang H, Manolache S, Wong ACL, Denes FS. Plasma-Mediated Grafting of Poly(ethylene glycol) on Polyamide and Polyester Surfaces and Evaluation of Antifouling Ability of Modified Substrates. Langmuir. 2007;23:7306-13.
    [72] Wei J, Yoshinari M, Takemoto S, Hattori M, Kawada E, Liu B, et al. Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability. Journal of Biomedical Materials Research - Part B Applied Biomaterials. 2007;81:66-75.
    [73] Mansur HS, Sadahira CM, Souza AN, Mansur AAP. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering: C. 2008;28:539-48.

    無法下載圖示 全文公開日期 2016/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE