簡易檢索 / 詳目顯示

研究生: 吳家旺
Jia-Wang Wu
論文名稱: 聚乙烯濾膜表面改質並探討其過濾表現
Surface modification of polyethylene membranes for the applications in filtration
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 周秀慧
Shiu-Huey
何明樺
Ming-Hua Ho
李振綱
Cheng-Kang Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 90
中文關鍵詞: 表面改質聚乙烯聚乙二醇親水性過濾電漿改質PNVP
外文關鍵詞: Surface modification, polyethylene, polyethylene glycol, hydrophilic, filtration, plasma modification, poly(N-vinyl-2-pyrrolidone)
相關次數: 點閱:265下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用聚乙烯 (polyethylene, PE) 做為濾膜,以親水性高分子,例如:聚多巴胺 (polydopamine)、聚乙烯基咯烷酮 (poly (N-vinyl-2-pyrrolidone), PNVP) 和聚乙二醇 (polyethylene glycol, PEG) 與其衍生物,修飾PE膜表面,並進行經過修飾濾膜的表面分析,利用甘油接觸角 (glycerol contact angle) ,量測表面相對親疏水性,使用SEM觀察改質前後濾膜的差異,利用FTIR鑑定官能基,利用ESCA分析表面化學組成。分析結果發現,經過不同表面改質方法,甘油接觸角於統計學上有明顯差異,顯示PE膜經過修飾,會提升其親水性;由表面型態上,PE經過修飾後,沒有明顯的差異;從FTIR和ESCA分析結果發現,親水性高分子皆存在於PE膜表面上。由過濾結果發現,經過poly(PEGMA-co-AA)修飾、PNVP、PEG (分子量:2,000)和PEG(分子量:5,000)修飾PE膜,過濾量皆從26 g提升至70 g,過濾通量皆從38 Lm-2h-1提升到100 Lm-2h-1,顯示經過親水性高分子修飾,可以有效提升過濾量與過濾通量以及延緩通量下降的趨勢。


    Abstract
    Polyethylene (PE) is a hydrophobic, biocompatible polymer with high excellent mechanical strength. In this work, the hydrophilic polymer, polydopamine, poly(N-vinyl-2-pyrrolidone) (PNVP), polyethylene glycol (PEG) and its derivatives were coated on the surface of PE membrane via oxygen plasma treatment or dipping technique. The hydrophilicity of the membranes was measured by glycerol contact angle. The chemical composition of original and modified membranes was characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and electron spectroscopy for chemical analyzer (ESCA). The morphology of the modified membranes was investigated by scanning electron microscopy (SEM). Hydrophobic PE porous membranes were easily modified by O2 plasma treatment and coating polydopamine, mPEG-N3, poly(PEGMA-co-AA), PNVP, PEG-2000, and PEG-5000. The hydrophilicity of PE membranes was significantly improved from result of glycerol contact angle measurement. On filtration experiment, the final weight and flux of all modified membranes were higher than pristine PE membrane.

    總目錄 摘要 I Abstract II 致謝 III 總目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究目的與動機 1 第二章 文獻回顧 3 2-1. 聚乙烯 (polyethylene, PE) 3 2-2. 聚乙烯基咯烷酮 (poly(N-vinyl-2-pyrrolidone), PNVP) 4 2-3. 聚乙二醇 (polyethylene glycol, PEG) 5 2-4. 多巴胺 (dopamine)之特性 7 2-5. 表面改質 7 2-6. 膜過濾 8 2-7. 電漿原理 10 2-8. 濾液通量的定義 11 第三章 實驗材料與方法 12 3-1. 研究目的 12 3-2. 實驗材料與儀器 12 3-2-1. 微過濾實驗材料 12 3-2-2. 表面改質 12 3-3. 實驗儀器 13 3-4. 實驗方法 13 3-4-1. 氧氣電漿處理 13 3-4-2. 聚多巴胺浸泡塗佈 14 3-4-3. PNVP浸泡塗佈 14 3-4-4. mPEG-NH2修飾 14 3-4-5. Poly(PEGMA-co-AA)修飾 15 3-4-6. mPEG-N3改質 15 3-4-7. 過濾實驗 16 3-5. 儀器原理 17 3-5-1. 接觸角量測 (contact angle measurement) 17 3-5-2. X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 17 3-5-3. 掃描式電子顯微鏡 (scanning electron microscopy, SEM) 18 3-5-4. 減弱全反射-傅立葉轉換紅外線光譜儀 (ATR-FTIR) 18 3-5-5. 統計學分析 (statistical analysis) 18 第四章 結果與討論 19 4-1. PE膜表面性質分析與其過濾表現 19 4-2. O2電漿表面改質PE膜 20 4-2-1. O2電漿改質PE膜的表面濕潤性 20 4-2-2. O2電漿改質PE膜的表面型態 20 4-2-3. O2電漿改質PE膜的表面官能基 20 4-2-4. O2電漿改質PE膜的表面化學組成 21 4-2-5. O2電漿處理PE膜的過濾行為 21 4-3. 聚多巴胺修飾PE膜 22 4-3-1. 聚多巴胺修飾PE膜的表面濕潤性 22 4-3-2. 聚多巴胺修飾PE膜的表面型態 22 4-3-3. 聚多巴胺修飾PE膜的表面官能基 22 4-3-4. 聚多巴胺修飾PE膜的表面化學組成 22 4-3-5. 聚多巴胺修飾PE膜的過濾行為 23 4-4. mPEG-N3修飾PE膜 23 4-4-1. mPEG-N3修飾PE膜的表面濕潤性 23 4-4-2. mPEG-N3修飾PE膜的表面型態 23 4-4-3. mPEG-N3修飾PE膜的表面官能基 24 4-4-4. mPEG-N3修飾PE膜的表面化學組成 24 4-4-5. mPEG-N3修飾PE膜的過濾行為 24 4-5. Poly(PEGMA-co-AA)修飾PE膜 25 4-5-1. Poly(PEGMA-co-AA)修飾PE膜的表面濕潤性 25 4-5-2. Poly(PEGMA-co-AA)修飾PE膜的表面型態 25 4-5-3. Poly(PEGMA-co-AA)修飾PE膜的表面官能基 26 4-5-4. Poly(PEGMA-co-AA)修飾PE膜的表面化學組成 26 4-5-5. Poly(PEGMA-co-AA)修飾PE膜的過濾行為 26 4-6. PNVP修飾PE膜 27 4-6-1. PNVP修飾PE膜的表面濕潤性 27 4-6-2. PNVP修飾PE膜的表面型態 28 4-6-3. PNVP修飾PE膜的表面官能基 28 4-6-4. PNVP修飾PE膜的表面化學組成 28 4-6-5. PNVP修飾PE膜的過濾行為 28 4-7. PEG-2000修飾PE膜 29 4-7-1. PEG-2000修飾PE膜的表面濕潤性 29 4-7-2. PEG-2000修飾PE膜的表面型態 29 4-7-3. PEG-2000修飾PE膜的表面官能基 30 4-7-4. PEG-2000修飾PE膜的表面化學組成 30 4-7-5. PEG-2000修飾PE膜的過濾行為 30 4-8. PEG-5000修飾PE膜 31 4-8-1. PEG-5000修飾PE膜的表面濕潤性 31 4-8-2. PEG-5000修飾PE膜的表面型態 31 4-8-3. PEG-5000修飾PE膜的表面官能基 31 4-8-4. PEG-5000修飾PE膜的表面化學組成 32 4-8-5. PEG-5000修飾PE膜的過濾行為 32 4-9. 不同表面改質方法對過濾的影響 33 第五章 結論 70 圖目錄 圖 2.1. PE的化學結構式 4 圖 2.2. PNVP的化學結構式 5 圖 2.3. mPEG-NH2的化學結構式 6 圖 2.4. PEGMA的化學結構式 6 圖 2.5. 多巴胺的化學結構式 7 圖 2. 6. 過濾示意圖 8 圖 2.7. 濾膜的結構: (a)緻密性結構 (b)均一孔洞結構 (c)緻密孔洞的結構 (d)不同孔洞大小的結構 9 圖 2.8. 流體流動方向 (a) NFF (b) TFF過濾系統 10 圖 3.1. 氧氣電漿處理結構圖 14 圖 3.2. 截留式過濾系統的結構圖 17 圖 4.1. 未改質PE膜上視圖和截面圖 34 圖 4.2. 未改質PE膜之ATR-FTIR圖譜 34 圖 4.3. 未改質PE膜於不同流體流率下的濾液累積重量(細胞液OD: 1.05 ± 0.05,過濾時間:2 h) 35 圖 4.5. 未改質PE膜於不同流體流率之通量下降圖(細胞液OD: 1.05 ± 0.05,過濾時間:2 h) 36 圖 4.6. 未改質過濾後的表面型態 37 圖 4.7. 甘油滴滴於 (a) PE膜 (b) O2電漿處理後的PE膜之示意圖 37 圖 4.8. 未改質以及經過O2電漿處理後的PE膜之甘油接觸角(壓力:100 mtorr,氣體流量:10 sccm,功率:100 W,處理時間:1 min) 37 圖 4.9. 未改質與經過O2電漿處理後PE膜的表面型態 38 圖 4.10. 經過O2電漿處理與未改質的PE濾膜之ATR-FTIR圖譜 38 圖 4.11. 未改質與經過O2電漿處理PE膜之全掃描能譜 39 圖 4.12. 未改質與O2電漿處理PE膜之濾液累積重量(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 39 圖 4.13. 未改質與O2電漿處理PE膜之過濾通量(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 40 圖 4.14. 未改質與O2電漿處理PE膜之過濾通量下降圖(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 40 圖 4.15. 甘油滴於 (a)未改質與 (b)聚多巴胺修飾PE膜 41 圖 4.16. 未改質與聚多巴胺修飾PE膜之甘油接觸角 41 圖 4.17. 未改質與聚多巴胺修飾PE膜之表面型態 42 圖 4.18. 未改質與聚多巴胺修飾PE膜之表面官能基 42 圖 4.19. 未改質與聚多巴胺修飾PE膜之全掃描能譜 43 圖 4.20. 未改質與聚多巴胺修飾PE膜之濾液累積重量(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 43 圖 4.21. 未改質與聚多巴胺修飾PE膜之過濾通量(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 44 圖 4.22. 未改質與聚多巴胺修飾PE膜之過濾通量下降圖(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 44 圖 4.23. 甘油滴於 (a)未改質與 (b)mPEG-N3修飾PE膜 45 圖 4.24. 未改質與mPEG-N3修飾PE膜之甘油接觸角 45 圖 4.25. 未改質與mPEG-N3修飾PE膜之表面型態 46 圖 4.26. 未改質與mPEG-N3修飾PE膜之表面官能基 46 圖 4.27. 未改質與mPEG-N3修飾PE膜之全掃描能譜 47 圖 4.28. 未改質與mPEG-N3修飾PE膜之濾液累積重量(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min、4 ml/min,過濾時間:2 h) 47 圖 4.29. 未改質與mPEG-N3修飾PE膜之過濾通量(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min、4 ml/min,過濾時間:2 h) 48 圖 4.30. 未改質與mPEG-N3修飾PE膜之過濾通量下降圖(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 48 圖 4.31. 未改質與mPEG-N3修飾PE膜之過濾通量下降圖(細胞液OD: 1.05 ± 0.05,流體流率:4 ml/min,過濾時間:2 h) 49 圖 4.32. 甘油滴於(a)未改質與(b)poly(PEGMA-co-AA)修飾PE膜 49 圖 4.33. 未改質與poly(PEGMA-co-AA)修飾PE膜之甘油接觸角 50 圖 4.34. 未改質與poly(PEGMA-co-AA)修飾PE膜之表面型態 50 圖 4.35. 未改質與poly(PEGMA-co-AA)修飾PE膜之表面官能基 51 圖 4.36. 未改質與poly(PEGMA-co-AA)修飾PE膜之全掃描能譜 51 圖 4.38. 未改質與poly(PEGMA-co-AA)修飾PE膜之過濾通量(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min、4 ml/min,過濾時間:2 h) 52 圖 4.39. 未改質與poly(PEGMA-co-AA)修飾PE膜之過濾通量下降圖(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 53 圖 4.40. 未改質與poly(PEGMA-co-AA)修飾PE膜之過濾通量下降圖(細胞液OD: 1.05 ± 0.05,流體流率:4 ml/min,過濾時間:2 h) 53 圖 4.41. 甘油滴於未改質與PNVP修飾PE膜 54 圖 4.42. 未改質與PNVP修飾PE膜之甘油接觸角 54 圖 4.43. 未改質與PNVP修飾PE膜之表面型態 55 圖 4.44. 未改質與PNVP修飾PE膜之表面官能基 56 圖 4.45. 未改質與PNVP修飾PE膜之全掃描能譜 56 圖 4.46. 未改質與PNVP修飾PE膜之濾液累積重量(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 57 圖 4.47. 未改質與PNVP修飾PE膜之過濾通量(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 58 圖 4.48. 未改質與PNVP修飾PE膜之過濾通量下降圖(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 58 圖 4.49. 甘油滴於未改質與PEG-2000修飾PE膜 59 圖 4.50. 未改質與PEG-2000修飾PE膜之甘油接觸角 59 圖 4.51. 未改質與PEG-2000修飾PE膜之表面型態 60 圖 4.52. 未改質與PEG-2000修飾PE膜之表面官能基 61 圖 4.53. 未改質與PEG-2000修飾PE膜之全掃描能譜 61 圖 4.55. 未改質與PEG-2000修飾PE膜之過濾通量(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 62 圖 4.56. 未改質與PEG-2000修飾PE膜之過濾通量下降圖(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 63 圖 4.57. 甘油滴於未改質與PEG-5000修飾PE膜 63 圖 4.58. 未改質與PEG-5000修飾PE膜之甘油接觸角 64 圖 4.59. 未改質與PEG-5000修飾PE膜之表面型態 65 圖 4.60. 未改質與PEG-5000修飾PE膜之表面官能基 66 圖 4.61. 未改質與PEG-5000修飾PE膜之全掃描能譜 66 圖 4.62. 未改質與PEG-5000修飾PE膜之濾液累積重量(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 67 圖 4.64. 未改質與PEG-5000修飾PE膜之過濾通量下降圖(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 68 圖 4.65. 比較不同表面改質方法對累積濾液重量的影響(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 68 圖 4.67. 比較不同表面改質方法對通量下降的影響(細胞液OD: 1.05 ± 0.05,流體流率:6 ml/min,過濾時間:2 h) 69 表目錄 表 2.1. 不同材料製備的濾膜 9 表 4. 1. PE主要的吸收峰值 35 表 4. 2. 未改質與經過O2電漿處理PE膜的元素組成 39 表 4. 3. 未改質與聚多巴胺修飾PE膜之表面元素組成 43 表 4. 4. 未改質與mPEG-N3修飾PE膜之表面元素組成 47 表 4. 5. 未改質與poly(PEGMA-co-AA)修飾PE膜之表面元素組成 51 表 4. 6. 未改質與PNVP修飾PE膜之表面化學元素 57 表 4. 7. 未改質與PEG- 2000修飾PE膜之表面元素組成 61 表 4. 8. 未改質與PEG- 5000修飾PE膜之表面元素組成 67

    [1] J.-H. Jiang, L.-P. Zhu, X.-L. Li, Y.-Y. Xu, B.-K. Zhu, Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin, Journal of Membrane Science, 364 (2010) 194-202.
    [2] L.-P. Zhu, J.-H. Jiang, B.-K. Zhu, Y.-Y. Xu, Immobilization of bovine serum albumin onto porous polyethylene membranes using strongly attached polydopamine as a spacer, Colloids and Surfaces B: Biointerfaces, 86 (2011) 111-118.
    [3] D. Ihm, J. Noh, J. Kim, Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery, Journal of Power Sources, 109 (2002) 388-393.
    [4] T. Xu, R. Fu, L. Yan, A new insight into the adsorption of bovine serum albumin onto porous polyethylene membrane by zeta potential measurements, FTIR analyses, and AFM observations, Journal of Colloid and Interface Science, 262 (2003) 342-350.
    [5] S.K.S. Al-Obeidani, H. Al-Hinai, M.F.A. Goosen, S. Sablani, Y. Taniguchi, H. Okamura, Chemical cleaning of oil contaminated polyethylene hollow fiber microfiltration membranes, Journal of Membrane Science, 307 (2008) 299-308.
    [6] Y.-H. Zhao, B.-K. Zhu, L. Kong, Y.-Y. Xu, Improving Hydrophilicity and Protein Resistance of Poly(vinylidene fluoride) Membranes by Blending with Amphiphilic Hyperbranched-Star Polymer, Langmuir, 23 (2007) 5779-5786.
    [7] F. Zhang, E.T. Kang, K.G. Neoh, P. Wang, K.L. Tan, Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption, Biomaterials, 22 (2001) 1541-1548.
    [8] S. Minko, S. Patil, V. Datsyuk, F. Simon, K.-J. Eichhorn, M. Motornov, D. Usov, I. Tokarev, M. Stamm, Synthesis of Adaptive Polymer Brushes via “Grafting To” Approach from Melt, Langmuir, 18 (2002) 289-296.
    [9] P. Wang, K.L. Tan, E.T. Kang, K.G. Neoh, Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane, Journal of Membrane Science, 195 (2002) 103-114.
    [10] Y.C. Nho, O.H. Kwon, Blood compatibility of AAc, HEMA, and PEGMA-grafted cellulose film, Radiation Physics and Chemistry, 66 (2003) 299-307.
    [11] Y. Chang, C.-Y. Ko, Y.-J. Shih, D. Qumener, A. Deratani, T.-C. Wei, D.-M. Wang, J.-Y. Lai, Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization, Journal of Membrane Science, 345 (2009) 160-169.
    [12] Z.-M. Liu, Z.-K. Xu, L.-S. Wan, J. Wu, M. Ulbricht, Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone): a facile plasma approach, Journal of Membrane Science, 249 (2005) 21-31.
    [13] F. Liu, C.-H. Du, B.-K. Zhu, Y.-Y. Xu, Surface immobilization of polymer brushes onto porous poly(vinylidene fluoride) membrane by electron beam to improve the hydrophilicity and fouling resistance, Polymer, 48 (2007) 2910-2918.
    [14] D. Rana, T. Matsuura, Surface Modifications for Antifouling Membranes, Chemical Reviews, 110 (2010) 2448-2471.
    [15] D. Mckel, E. Staude, M.D. Guiver, Static protein adsorption, ultrafiltration behavior and cleanability of hydrophilized polysulfone membranes, Journal of Membrane Science, 158 (1999) 63-75.
    [16] Y.-J. Li, T. Hanada, T. Nakaya, Surface Modification of Segmented Polyurethanes by Grafting Methacrylates and Phosphatidylcholine Polar Headgroups To Improve Hemocompatibility, Chemistry of Materials, 11 (1999) 763-770.
    [17] J. Pieracci, J.V. Crivello, G. Belfort, UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone conto poly(ether sulfone) ultrafiltration membranes using selective UV wavelengths, Chemistry of Materials, 14 (2002) 256-265.
    [18] D.S. Wavhal, E.R. Fisher, Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization, Journal of Membrane Science, 209 (2002) 255-269.
    [19] Q. He, Z. Liu, P. Xiao, R. Liang, N. He, Z. Lu, Preparation of Hydrophilic Poly(dimethylsiloxane) Stamps by Plasma-Induced Grafting, Langmuir, 19 (2003) 6982-6986.
    [20] D.S. Wavhal, E.R. Fisher, Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling, Langmuir, 19 (2003) 79-85.
    [21] M. Lehocký, H. Drnovsk, B. LapcIkov, A.M. Barros-Timmons, T. Trindade, M. Zembala, J.L. LapcIk, Plasma surface modification of polyethylene, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 222 (2003) 125-131.
    [22] K. Ishihara, D. Nishiuchi, J. Watanabe, Y. Iwasaki, Polyethylene/phospholipid polymer alloy as an alternative to poly(vinylchloride)-based materials, Biomaterials, 25 (2004) 1115-1122.
    [23] A. Wang, A. Essner, R. Klein, Effect of contact stress on friction and wear of ultra-high molecular weight polyethylene in total hip replacement, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 215 (2001) 133-139.
    [24] G.K. Elyashevich, A.S. Olifirenko, A.V. Pimenov, Micro- and nanofiltration membranes on the base of porous polyethylene films, Desalination, 184 (2005) 273-279.
    [25] N. Sprang, D. Theirich, J. Engemann, Plasma and ion beam surface treatment of polyethylene, Surface and Coatings Technology, 74-75 (1995) 689-695.
    [26] O.Z. Higa, Rogero, S. O., Machado, L. D. B., Mathor, M. B., Lugo, A. B., Biocompatibility study for PVP wound dressing obtained in different conditions, Radiation Physics and Chemistry, 55 (1999) 705-707.
    [27] C.M.A. Lopes, M.I. Felisberti, Mechanical behaviour and biocompatibility of poly(1-vinyl-2-pyrrolidinone)-gelatin IPN hydrogels, Biomaterials, 24 (2003) 1279-1284.
    [28] S. Robinson, P.A. Williams, Inhibition of Protein Adsorption onto Silica by Polyvinylpyrrolidone, Langmuir, 18 (2002) 8743-8748.
    [29] R. Feng, Wang, Chanchan, Xu, Xiaochen, Yang, Fenglin, Xu, Guangjing, Jiang, Tao, Highly effective antifouling performance of N-vinyl-2-pyrrolidone modified polypropylene non-woven fabric membranes by ATRP method, Journal of Membrane Science, 369 (2011) 233-242.
    [30] G. Blume, G. Cevc, Molecular mechanism of the lipid vesicle longevity in vivo, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1146 (1993) 157-168.
    [31] S.N.J. Pang, Final report on the safety assessment of polyethylene glycols (PEGs)-6, -8, -32, -75, -150, -14M, -20M, J. Am. Coll. Toxicol., 12 (1993) 429–456.
    [32] S. Dreborg, E.B. Akerblom, Immunotherapy with monomethoxypolyethylene glycol modified allergens, Critical Reviews in Therapeutic Drug Carrier Systems, 6 (1990) 315-365.
    [33] R.A. D'Sa, B.J. Meenan, Chemical Grafting of Poly(ethylene glycol) Methyl Ether Methacrylate onto Polymer Surfaces by Atmospheric Pressure Plasma Processing, Langmuir, 26 (2009) 1894-1903.
    [34] B.D. McCloskey, H.B. Park, H. Ju, B.W. Rowe, D.J. Miller, B.J. Chun, K. Kin, B.D. Freeman, Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes, Polymer, 51 (2010) 3472-3485.
    [35] Y.G. Ko, Y.H. Kim, K.D. Park, H.J. Lee, W.K. Lee, H.D. Park, S.H. Kim, G.S. Lee, D.J. Ahn, Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation, Biomaterials, 22 (2001) 2115-2123.
    [36] Y.-Q. Song, J. Sheng, M. Wei, X.-B. Yuan, Surface modification of polysulfone membranes by low-temperature plasma–graft poly(ethylene glycol) onto polysulfone membranes, Journal of Applied Polymer Science, 78 (2000) 979-985.
    [37] S. Pinto, P. Alves, C.M. Matos, A.C. Santos, L.R. Rodrigues, J.A. Teixeira, M.H. Gil, Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications, Colloids and Surfaces B: Biointerfaces, 81 (2010) 20-26.
    [38] T. Tugulu, H.-A. Klok, Surface modification of polydimethylsiloxane substrates with nonfouling poly(poly(ethylene glycol)methacrylate) brushes, Macromol. Sympos., 279 (2009) 103-109.
    [39] W.-H. Zhou, C.-H. Lu, X.-C. Guo, F.-R. Chen, H.-H. Yang, X.-R. Wang, Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition, Journal of Materials Chemistry, 20 (2010) 880-883.
    [40] K. Liu, W.-Z. Wei, J.-X. Zeng, X.-Y. Liu, Y.-P. Gao, Application of a novel electrosynthesized polydopamine-imprinted film to the capacitive sensing of nicotine, Analytical and Bioanalytical Chemistry, 385 (2006) 724-729.
    [41] H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-Inspired Surface Chemistry for Multifunctional Coatings, Science, 318 (2007) 426-430.
    [42] R. Ouyang, J. Lei, H. Ju, Y. Xue, A Molecularly Imprinted Copolymer Designed for Enantioselective Recognition of Glutamic Acid, Advanced Functional Materials, 17 (2007) 3223-3230.
    [43] R. Ouyang, J. Lei, H. Ju, Surface molecularly imprinted nanowire for protein specific recognition, Chemical Communications, (2008) 5761-5763.
    [44] X.-B. Yin, D.-Y. Liu, Polydopamine-based permanent coating capillary electrochromatography for auxin determination, Journal of Chromatography A, 1212 (2008) 130-136.
    [45] Z.-Y. Xi, Y.-Y. Xu, L.-P. Zhu, Y. Wang, B.-K. Zhu, A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine), Journal of Membrane Science, 327 (2009) 244-253.
    [46] J. Zhou, R.F. Childs, A.M. Mika, Pore-filled nanofiltration membranes based on poly(2-acrylamido-2-methylpropanesulfonic acid) gels, Journal of Membrane Science, 254 (2005) 89-99.
    [47] M.-X. Hu, Q. Yang, Z.-K. Xu, Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators, Journal of Membrane Science, 285 (2006) 196-205.
    [48] H. Kaczmarek, H. Chaberska, AFM and XPS study of UV-irradiated poly(methyl methacrylate) films on glass and aluminum support, Applied Surface Science, 255 (2009) 6729-6735.
    [49] L.-S. Shi, L.-Y. Wang, Y.-N. Wang, The investigation of argon plasma surface modification to polyethylene: Quantitative ATR-FTIR spectroscopic analysis, European Polymer Journal, 42 (2006) 1625-1633.
    [50] M.-G. Yan, L.-Q. Liu, Z.-Q. Tang, L. Huang, W. Li, J. Zhou, J.-S. Gu, X.-W. Wei, H.-Y. Yu, Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion, Chemical Engineering Journal, 145 (2008) 218-224.
    [51] H.-Y. Yu, Z.-Q. Tang, L. Huang, G. Cheng, W. Li, J. Zhou, M.-G. Yan, J.-S. Gu, X.-W. Wei, Surface modification of polypropylene macroporous membrane to improve its antifouling characteristics in a submerged membrane-bioreactor: H2O plasma treatment, Water Research, 42 (2008) 4341-4347.
    [52] Y. Kim, K.-J. Kim, Y. Lee, Surface analysis of fluorine-containing thin films fabricated by various plasma polymerization methods, Surface and Coatings Technology, 203 (2009) 3129-3135.
    [53] F. Liu, B.-K. Zhu, Y.-Y. Xu, Improving the hydrophilicity of poly(vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers, Applied Surface Science, 253 (2006) 2096-2101.
    [54] B. Deng, M. Yu, X. Yang, B. Zhang, L. Li, L. Xie, J. Li, X. Lu, Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid grafted poly(vinylidene fluoride) powder synthesized via pre-irradiation induced graft polymerization, Journal of Membrane Science, 350 (2010) 252-258.
    [55] K. Sutherland, Filters and Filtration Handbook, Butterworth-Heinemann, Oxford, 2008.
    [56] M. Cheryan, Ultrafiltration and Microfiltration Handbook, Technomic Publishing Company, Inc, Lancaster, Pennsylvania, 1998.
    [57] R. Ghosh, Principle of Bioseparations engineering, World Scientific Publishing Co. Pte. Ltd., 2006.
    [58] N. Inagaki, Plasma Surface Modification and Plasma Polymerization, Technomic Publishing Company, Inc, Lancaster, Pennsylvania, 1996.
    [59] B. Li, W. Liu, Z. Jiang, X. Dong, B. Wang, Y. Zhong, Ultrathin and Stable Active Layer of Dense Composite Membrane Enabled by Poly(dopamine), Langmuir, 25 (2009) 7368-7374.
    [60] 臧家良, 藉由點擊化學固定PEG於多巴胺修飾的高分子薄膜表面, in: 國立台灣科技大學化學工程學系, Taipei, Taiwan, 2010.
    [61] C.J. Budziak, E.I. Vargha-Butler, A.W. Neumann, Temperature dependence of contact angles on elastomers, Journal of Applied Polymer Science, 42 (1991) 1959-1964.
    [62] 劉智生, 洪儒生, ESCA-X 射線光電子能譜儀, 化工技術, 15.
    [63] 羅聖全, 電子顯微鏡介紹-SEM, 小奈米大世界.
    [64] K. Ishihara, Y. Iwasaki, S. Ebihara, Y. Shindo, N. Nakabayashi, Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance, Colloids and Surfaces B: Biointerfaces, 18 (2000) 325-335.
    [65] J.-H. Liu, H.-L. Jen, Y.-C. Chung, Surface modification of polyethylene membranes using phosphorylcholine derivatives and their platelet compatibility, Journal of Applied Polymer Science, 74 (1999) 2947-2954.
    [66] C.M. Chan, T.M. Ko, H. Hiraoka, Polymer surface modification by plasmas and photons, Surface Science Reports, 24 (1996) 1-54.
    [67] I. Pashkuleva, A. Marques, F. Vaz, R. Reis, Surface modification of starch based biomaterials by oxygen plasma or UV-irradiation, Journal of Materials Science: Materials in Medicine, 21 (2010) 21-32.
    [68] A. Rahimpour, S.S. Madaeni, Y. Mansourpanah, Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media, Journal of Membrane Science, 364 (2010) 380-388.
    [69] S.G. Kazarian, G.G. Martirosyan, Spectroscopy of polymer/drug formulations processed with supercritical fluids: in situ ATR-IR and Raman study of impregnation of ibuprofen into PVP, International Journal of Pharmaceutics, 232 (2002) 81-90.

    無法下載圖示 全文公開日期 2016/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE