簡易檢索 / 詳目顯示

研究生: 楊麟翔
Ivan - Yared
論文名稱: 利用氧氣電漿以及聚巴胺塗佈對聚偏二氟乙烯及聚碸進行表面處理
Surface modifications of Polyvinylidene fluoride and Polysulfone by O2 plasma and polydopamine coating
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 李振綱
Cheng-Kang Lee
劉志成
Jhy-Chern Liu
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 126
中文關鍵詞: Surface modificationpolyvinylidene fluoridepolysulfoneoxygen plasmapolydopaminecell adhesionmicrofiltration
外文關鍵詞: Surface modification, polyvinylidene fluoride, polysulfone, oxygen plasma, polydopamine, cell adhesion, microfiltration
相關次數: 點閱:318下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Oxygen plasma and polydopamine coating were performed on two polymers with excellent mechanical strength and good biocompatibility, polyvinilydene fluoride and polysulfone, to study the effects of surface modifications on the surface physical-chemical properties and on the cell adhesion behaviors.

    O2 plasma altered both PVDF and PSf to more hydrophilic where the WCA reduced more significantly on the O2 plasma treated PSf. By using XPS, the presence of oxygen functionalities on modified surfaces were confirmed and further deconvolution revealed the presence of C-O, C=O, and O-C=O groups. Surface etching occurred on both O2 plasma modified polymers as demonstrated by AFM analysis. On the other hand, the polydopamine coating resulted in similar reduction of WCA and surface composition on both PVDF and PSf which was also confirmed by AFM.

    The biocompatibility was evaluated by directly cultivating L-929 mouse fibroblast cells on pristine and modified PVDF and PSf. For PVDF, the highest cell density, three to four folds than the pristine, was achieved by either O2 plasma modification or polydopamine coating. On the other, for PSf, the polydopamine coating resulted in higher cell density compared with O2 plasma treatment.

    PVDF is widely used for filtration owing to its good mechanical property, thermal stability, and good solvent resistance. The commonly recognized problem of PVDF filtration membrane was the fouling due to the adsorbed protein on the hydrophobic membrane surface which reduced the permeate flux. In this study, the second goal was to reduce protein fouling on Durapore® membrane by surface modification with O2 plasma treatment and polydopamine coating.

    Both O2 plasma modified and polydopamine coated Durapore® membrane showed reduced WCA where O2 plasma treatment resulted in higher surface area due to plasma etching and higher surface electronegativity, the polydoapmine coating reduced membrane surface area and imparted positively-charged functionalities on membrane surface.

    The BSA fouling resistance was created by O2 plasma on Durapore® membrane where the fouling time was delayed by more than 10 min and the flux was higher than the pristine Durapore® membrane. Further reduction of membrane fouling was attained by prolonging plasma treatment time which resulted in more negatively charged surface. On the other hand, the polydopamine coated Durapore® membrane showed rapid flux reduction and no particular anti-fouling property was observed. By performing the dynamic BSA adsorption experiment, it allowed to draw a conclusion that the membrane fouling was strongly affected by the overall resulted properties of surface electrical charge, surface wettability and surface area.


    Oxygen plasma and polydopamine coating were performed on two polymers with excellent mechanical strength and good biocompatibility, polyvinilydene fluoride and polysulfone, to study the effects of surface modifications on the surface physical-chemical properties and on the cell adhesion behaviors.

    O2 plasma altered both PVDF and PSf to more hydrophilic where the WCA reduced more significantly on the O2 plasma treated PSf. By using XPS, the presence of oxygen functionalities on modified surfaces were confirmed and further deconvolution revealed the presence of C-O, C=O, and O-C=O groups. Surface etching occurred on both O2 plasma modified polymers as demonstrated by AFM analysis. On the other hand, the polydopamine coating resulted in similar reduction of WCA and surface composition on both PVDF and PSf which was also confirmed by AFM.

    The biocompatibility was evaluated by directly cultivating L-929 mouse fibroblast cells on pristine and modified PVDF and PSf. For PVDF, the highest cell density, three to four folds than the pristine, was achieved by either O2 plasma modification or polydopamine coating. On the other, for PSf, the polydopamine coating resulted in higher cell density compared with O2 plasma treatment.

    PVDF is widely used for filtration owing to its good mechanical property, thermal stability, and good solvent resistance. The commonly recognized problem of PVDF filtration membrane was the fouling due to the adsorbed protein on the hydrophobic membrane surface which reduced the permeate flux. In this study, the second goal was to reduce protein fouling on Durapore® membrane by surface modification with O2 plasma treatment and polydopamine coating.

    Both O2 plasma modified and polydopamine coated Durapore® membrane showed reduced WCA where O2 plasma treatment resulted in higher surface area due to plasma etching and higher surface electronegativity, the polydoapmine coating reduced membrane surface area and imparted positively-charged functionalities on membrane surface.

    The BSA fouling resistance was created by O2 plasma on Durapore® membrane where the fouling time was delayed by more than 10 min and the flux was higher than the pristine Durapore® membrane. Further reduction of membrane fouling was attained by prolonging plasma treatment time which resulted in more negatively charged surface. On the other hand, the polydopamine coated Durapore® membrane showed rapid flux reduction and no particular anti-fouling property was observed. By performing the dynamic BSA adsorption experiment, it allowed to draw a conclusion that the membrane fouling was strongly affected by the overall resulted properties of surface electrical charge, surface wettability and surface area.

    Abstract i Acknowledgement iii Table of contents iv List of figures ix List of tables xvi Abbreviations xviii Chapter 1. Introduction 1-1 The promotion of biocompatibility on PVDF and PSf 1 1-2 Improvement of filtration performance of PVDF membrane 2 Chapter 2. Literature review 2-1 Polyvinilydene fluoride (PVDF) 5 2-2 Polysulfone (PSf) 6 2-3 Surface modification by oxygen plasma treatment 6 2-4 Surface modification by polydopamine coating 8 2-5 Protein-adsorption-mediated cell adhesion 10 2-5-1 Cell adhesion promotion by O2 plasma treatment 12 2-5-2 Cell adhesion promotion by polydopamine coating 13 2-6 Membrane filtration 14 2-6-1 Microfiltration membrane 14 2-6-2 Crossflow filtration 16 2-7 Membrane fouling by protein 17 2-8 Surface modification to improve membrane performance 18 2-9 Permeate fluxes and hydraulic resistances of microfiltration 19 Chapter 3. Experimental 3-1 Experimental flow chart 29 3-2 Materials 3-2-1 Preparation of polymer thin films 30 3-2-2 Chemicals for preparing polydopamine coating 30 3-2-3 Chemicals for cell culture 30 3-2-4 Chemicals for static protein adsorption 31 3-2-5 Chemicals for cell adhesion studies 31 3-2-6 Chemicals for dynamic protein adsorption 31 3-3 Instruments 32 3-4 Methods 3-4-1 Polymer thin film preparation 33 3-4-2 Surface modification: O2 plasma treatment 33 3-4-3 Surface modification: polydopamine coating 34 3-4-4 Static protein adsorption 34 3-4-5 Cell adhesion 3-4-5-1 Preparation of cell culture medium 35 3-4-5-2 Preparation of solution for LDH (lactate dehydrogenase) analysis 35 3-4-5-3 Cell culture 36 3-4-6 Dynamic protein adsorption 37 3-5 Surface characterization 3-5-1 Water contact angle 38 3-5-2 Attenuated total reflectance (ATR) FT-IR Spectroscopy 38 3-5-3 X-ray photoelectron spectroscopy (XPS) 39 3-5-4 Atomic force microscope (AFM) 39 3-5-5 Scanning electron microscope (SEM) 39 3-5-6 Zeta potential 39 Chapter 4. Results and discussion 4-1 Surface modifications of PVDF by oxygen plasma 4-1-1 Surface wettability of O2 plasma modified PVDF 40 4-1-2 Surface chemical functionality on O2 plasma modified PVDF 41 4-1-3 Surface elemental composition of O2 plasma modified PVDF 43 4-1-4 Surface morphology of O2 plasma modified PVDF 46 4-1-5 Static BSA adsorption on O2 plasma modified PVDF 48 4-1-6 Cell adhesion on O2 plasma modified PVDF 50 4-2 Surface modifications of PSf by oxygen plasma 4-2-1 Surface wettability of O2 plasma modified PSf 53 4-2-2 Surface chemical functionality on O2 plasma modified PSf 54 4-2-3 Surface elemental composition of O2 plasma modified PSf 56 4-2-4 Surface morphology of O2 plasma modified PSf 58 4-2-5 Static BSA adsorption on O2 plasma modified PSf 60 4-2-6 Cell adhesion on O2 plasma modified PSf 62 4-3 Surface modifications of PVDF by polydopamine coating 4-3-1 Surface wettability of polydopamine coated PVDF 64 4-3-2 Surface chemical functionality on polydopamine coated PVDF 65 4-3-3 Surface elemental composition of polydopamine coated PVDF 66 4-3-4 Surface morphology of polydopamine coated PVDF 69 4-3-5 Static BSA adsorption on polydopamine coated PVDF 70 4-3-6 Cell adhesion on polydopamine coated PVDF 71 4-4 Surface modifications of PSf by polydopamine coating 4-4-1 Surface wettability of polydopamine coated PSf 73 4-4-2 Surface chemical functionality on polydopamine coated PSf 74 4-4-3 Surface elemental composition of polydopamine coated PSf 75 4-4-4 Surface morphology of polydopamine coated PSf 77 4-4-5 Static BSA adsorption on polydopamine coated PSf 78 4-4-6 Cell adhesion on polydopamine coated PSf 78 4-5 Dynamic protein adsorption on O2 plasma modified Durapore® membrane 4-5-1 WCA of O2 plasma modified Durapore® membrane 81 4-5-2 Surface morphology of O2 plasma modified Durapore® membrane 82 4-5-3 Zeta potential of O2 plasma modified Durapore® membrane 85 4-5-4 Optimization of MF parameters 4-5-4-1 Effect of TMP and cross flow velocity 86 4-5-4-2 Effect of membrane pretreatment 88 4-5-5 Microfiltration (MF) performance of O2 plasma modified Durapore® membrane 4-5-5-1 Pretreatment by compaction on O2 plasma modified Durapore® membrane 89 4-5-5-2 Pretreatment by ethanol immersion on O2 plasma modified Durapore® membrane 96 4-6 Dynamic protein adsorption on polydopamine coated Durapore® membrane 4-6-1 WCA of O2 polydopamine coated Durapore® membrane 100 4-6-2 Surface morphology of polydopamine coated Durapore® membrane 100 4-6-3 Zeta potential of polydopamine coated Durapore® membrane 103 4-6-4 PEG incorporation onto polydopamine coated substrate 103 4-6-5 Microfiltration (MF) performance of polydopamine coated Durapore® membrane 4-6-5-1 Pretreatment by compaction on polydopamine coated Durapore® membrane 106 4-6-5-2 Pretreatment by ethanol immersion on polydopamine coated Durapore® membrane 110 Chapter 5. Conclusion 115 References 117

    1. Rodrigues, M. T., Gomes, M. E., Mano, J. F., and Reis, R. L. (2008) β-PVDF Membranes Induce Cellular Proliferation and Differentiation in Static and Dynamic Conditions, Materials Science Forum 587, 72-76.
    2. Junge, K., Rosch, R., Klinge, U., Krones, C., Klosterhalfen, B., Mertens, P. R., Lynen, P., Kunz, D., Preiß, A., Peltroche-Llacsahuanga, H., and Schumpelick, V. (2005) Gentamicin supplementation of polyvinylidenfluoride mesh materials for infection prophylaxis, Biomaterials 26, 787-793.
    3. Klinge, U., Klosterhalfen, B., Öttinger, A. P., Junge, K., and Schumpelick, V. (2002) PVDF as a new polymer for the construction of surgical meshes, Biomaterials 23, 3487-3493.
    4. Bouaziz, A., Richert, A., and Caprani, A. (1997) Vascular endothelial cell responses to different electrically charged poly(vinylidene fluoride) supports under static and oscillating flow conditions, Biomaterials 18, 107-112.
    5. Laroche, G., Marois, Y., Guidoin, R., King, M. W., Martin, L., How, T., and Douville, Y. (1995) Polyvinylidene fluoride (PVDF) as a biomaterial: From polymeric raw material to monofilament vascular suture, Journal of Biomedical Materials Research 29, 1525-1536.
    6. Wenz, L. M., Merritt, K., Brown, S. A., Moet, A., and Steffee, A. D. (1990) In vitro biocompatibility of polyetheretherketone and polysulfone composites, Journal of Biomedical Materials Research 24, 207-215.
    7. Hasegawa, T., Iwasaki, Y., and Ishihara, K. (2001) Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend, Biomaterials 22, 243-251.
    8. Hayama, M., Yamamoto, K.-i., Kohori, F., Uesaka, T., Ueno, Y., Sugaya, H., Itagaki, I., and Sakai, K. (2004) Nanoscopic behavior of polyvinylpyrrolidone particles on polysulfone/polyvinylpyrrolidone film, Biomaterials 25, 1019-1028.
    9. Ishihara, K., Fukumoto, K., Iwasaki, Y., and Nakabayashi, N. (1999) Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion, Biomaterials 20, 1553-1559.
    10. Rockel, A., Hertel, J., Fiegel, P., Abdelhamid, S., Panitz, N., and Walb, D. (1986) Permeability and secondary membrane formation of a high flux polysulfone hemofilter, Kidney Int 30, 429-432.
    11. Inagaki, N. (1996) Plasma Surface Modification and Plasma Polymerization, Technomic Publishing Company, Inc, Lancaster, Pennsylvania.
    12. Chu, P. K., Chen, J. Y., Wang, L. P., and Huang, N. (2002) Plasma-surface modification of biomaterials, Materials Science and Engineering: R: Reports 36, 143-206.
    13. Chan, C. M., Ko, T. M., and Hiraoka, H. (1996) Polymer surface modification by plasmas and photons, Surface Science Reports 24, 1-54.
    14. Wan, Y., Qu, X., Lu, J., Zhu, C., Wan, L., Yang, J., Bei, J., and Wang, S. (2004) Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment, Biomaterials 25, 4777-4783.
    15. Qu, X., Cui, W., Yang, F., Min, C., Shen, H., Bei, J., and Wang, S. (2007) The effect of oxygen plasma pretreatment and incubation in modified simulated body fluids on the formation of bone-like apatite on poly(lactide-co-glycolide) (70/30), Biomaterials 28, 9-18.
    16. Gilson, K., Ju Hyoung, J., Jin Whan, L., Soon Chae, C., and Hai Bang, L. (1997) Cell and platelet adhesions on plasma glow discharge-treated poly(lactide-co-glycolide), Bio-Medical Materials and Engineering 7, 357-368.
    17. Yamaguchi, M., Shinbo, T., Kanamori, T., Wang, P.-c., Niwa, M., Kawakami, H., Nagaoka, S., Hirakawa, K., and Kamiya, M. (2004) Surface modification of poly(l -lactic acid) affects initial cell attachment, cell morphology, and cell growth, Journal of Artificial Organs 7, 187-193.
    18. Ozcan, C., inodot, Zorlutuna, n., Vas, Hasirci, f., and Hasirci, N. (2008) Influence of Oxygen Plasma Modification on Surface Free Energy of PMMA Films and Cell Attachment, Macromolecular Symposia 269, 128-137.
    19. Köse, G. T., Korkusuz, F., Korkusuz, P., Purali, N., Özkul, A., and HasIrcI, V. (2003) Bone generation on PHBV matrices: an in vitro study, Biomaterials 24, 4999-5007.
    20. Köse, G. T., Kenar, H., HasIrcI, N., and HasIrcI, V. (2003) Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering, Biomaterials 24, 1949-1958.
    21. Ozdemir, Y., Hasirci, N., and Serbetci, K. (2002) Oxygen plasma modification of polyurethane membranes, Journal of Materials Science: Materials in Medicine 13, 1147-1152.
    22. Ramires, P. A., Mirenghi, L., Romano, A. R., Palumbo, F., and Nicolardi, G. (2000) Plasma-treated PET surfaces improve the biocompatibility of human endothelial cells, Journal of Biomedical Materials Research 51, 535-539.
    23. Wei, J., Yoshinari, M., Takemoto, S., Hattori, M., Kawada, E., Liu, B., and Oda, Y. (2007) Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability, Journal of Biomedical Materials Research Part B: Applied Biomaterials 81B, 66-75.
    24. Steuer, H., Fadale, R., Müller, E., Müller, H.-W., Planck, H., and Schlosshauer, B. (1999) Biohybride nerve guide for regeneration: degradable polylactide fibers coated with rat Schwann cells, Neuroscience Letters 277, 165-168.
    25. Alves, C. M., Yang, Y., Carnes, D. L., Ong, J. L., Sylvia, V. L., Dean, D. D., Agrawal, C. M., and Reis, R. L. (2007) Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption, Biomaterials 28, 307-315.
    26. Khorasani, M. T., Mirzadeh, H., and Irani, S. (2008) Plasma surface modification of poly (l-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion, Radiation Physics and Chemistry 77, 280-287.
    27. Lee, H., Dellatore, S. M., Miller, W. M., and Messersmith, P. B. (2007) Mussel-Inspired Surface Chemistry for Multifunctional Coatings, Science 318, 426-430.
    28. Ku, S. H., Ryu, J., Hong, S. K., Lee, H., and Park, C. B. (2010) General functionalization route for cell adhesion on non-wetting surfaces, Biomaterials 31, 2535-2541.
    29. Cheryan, M. (1998) Ultrafiltration and Microfiltration Handbook, Technomic Publishing Company, Inc, Lancaster, Pennsylvania.
    30. Sutherland, K. (2008) Filters and Filtration Handbook, Butterworth-Heinemann, Oxford.
    31. Frenander, U., and Jönsson, A.-S. (1996) Cell harvesting by cross-flow microfiltration using a shear-enhanced module, Biotechnology and Bioengineering 52, 397-403.
    32. Mueller, J., and Davis, R. H. (1996) Protein fouling of surface-modified polymeric microfiltration membranes, Journal of Membrane Science 116, 47-60.
    33. Nakamura, K., and Matsumoto, K. (2006) Properties of protein adsorption onto pore surface during microfiltration: Effects of solution environment and membrane hydrophobicity, Journal of Membrane Science 280, 363-374.
    34. Gancarz, I., Pozniak, G., and Bryjak, M. (1999) Modification of polysulfone membranes 1. CO2 plasma treatment, European Polymer Journal 35, 1419-1428.
    35. Kim, K. S., Lee, K. H., Cho, K., and Park, C. E. (2002) Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment, Journal of Membrane Science 199, 135-145.
    36. Bryjak, M., Gancarz, I., Pozniak, G., and Tylus, W. (2002) Modification of polysulfone membranes 4. Ammonia plasma treatment, European Polymer Journal 38, 717-726.
    37. Gancarz, I., Pozniak, G., and Bryjak, M. (2000) Modification of polysulfone membranes: 3. Effect of nitrogen plasma, European Polymer Journal 36, 1563-1569.
    38. Freeman, B., D., Park, Ho, Bum, McCloskey, Bryan, D. (2010) Water Purification Membranes with Improved Fouling Resistance.
    39. Zhu, L.-P., Yu, J.-Z., Xu, Y.-Y., Xi, Z.-Y., and Zhu, B.-K. (2009) Surface modification of PVDF porous membranes via poly(DOPA) coating and heparin immobilization, Colloids and Surfaces B: Biointerfaces 69, 152-155.
    40. Liu, T.-Y., Lin, W.-C., Huang, L.-Y., Chen, S.-Y., and Yang, M.-C. (2005) Surface characteristics and hemocompatibility of PAN/PVDF blend membranes, Polymers for Advanced Technologies 16, 413-419.
    41. Lin, D.-J., Lin, D.-T., Young, T.-H., Huang, F.-M., Chen, C.-C., and Cheng, L.-P. (2004) Immobilization of heparin on PVDF membranes with microporous structures, Journal of Membrane Science 245, 137-146.
    42. Matsudaira, P. (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes, Journal of Biological Chemistry 262, 10035-10038.
    43. Ademovic, Z., Klee, D., Kingshott, P., Kaufmann, R., and Höcker, H. (2002) Minimization of protein adsorption on poly(vinylidene fluoride), Biomolecular Engineering 19, 177-182.
    44. Klee, D., Ademovic, Z., Bosserhoff, A., Hoecker, H., Maziolis, G., and Erli, H.-J. (2003) Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion, Biomaterials 24, 3663-3670.
    45. Hung, C.-H., Lin, Y.-L., and Young, T.-H. (2006) The effect of chitosan and PVDF substrates on the behavior of embryonic rat cerebral cortical stem cells, Biomaterials 27, 4461-4469.
    46. Boudin, F., Andrieu, X., Jehoulet, C., and Olsen, I. I. (1999) Microporous PVdF gel for lithium-ion batteries, Journal of Power Sources 81-82, 804-807.
    47. Magistris, A., Mustarelli, P., Parazzoli, F., Quartarone, E., Piaggio, P., and Bottino, A. (2001) Structure, porosity and conductivity of PVdF films for polymer electrolytes, Journal of Power Sources 97-98, 657-660.
    48. Lehtinen, T., Sundholm, G., Holmberg, S., Sundholm, F., Björnbom, P., and Bursell, M. (1998) Electrochemical characterization of PVDF-based proton conducting membranes for fuel cells, Electrochimica Acta 43, 1881-1890.
    49. Flint, S. D., and Slade, R. C. T. (1997) Investigation of radiation-grafted PVDF-g-polystyrene-sulfonic-acid ion exchange membranes for use in hydrogen oxygen fuel cells, Solid State Ionics 97, 299-307.
    50. Park, J.-M., Kong, J.-W., Kim, D.-S., and Yoon, D.-J. (2005) Nondestructive damage detection and interfacial evaluation of single-fibers/epoxy composites using PZT, PVDF and P(VDF-TrFE) copolymer sensors, Composites Science and Technology 65, 241-256.
    51. Ueberschlag, P. (2001) PVDF piezoelectric polymer, Sensor Review 21, 118-126.
    52. Lin, B., and Giurgiutiu, V. (2006) Modeling and testing of PZT and PVDF piezoelectric wafer active sensors, Smart Materials and Structures 15, 1085.
    53. Kim, D. H., Kim, B., and Kang, H. (2004) Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation, Microsystem Technologies 10, 275-280.
    54. Henrioulle, K., and Sas, P. (2003) Experimental validation of a collocated PVDF volume velocity sensor/actuator pair, Journal of Sound and Vibration 265, 489-506.
    55. Qiu, G.-M., Zhu, L.-P., Zhu, B.-K., Xu, Y.-Y., and Qiu, G.-L. (2008) Grafting of styrene/maleic anhydride copolymer onto PVDF membrane by supercritical carbon dioxide: Preparation, characterization and biocompatibility, The Journal of Supercritical Fluids 45, 374-383.
    56. Chen, S.-H., Yu, K.-C., Lin, S.-S., Chang, D.-J., and Liou, R. M. (2001) Pervaporation separation of water/ethanol mixture by sulfonated polysulfone membrane, Journal of Membrane Science 183, 29-36.
    57. Tsai, H. A., Li, L. D., Lee, K. R., Wang, Y. C., Li, C. L., Huang, J., and Lai, J. Y. (2000) Effect of surfactant addition on the morphology and pervaporation performance of asymmetric polysulfone membranes, Journal of Membrane Science 176, 97-103.
    58. Li, B., Liu, W., Jiang, Z., Dong, X., Wang, B., and Zhong, Y. (2009) Ultrathin and Stable Active Layer of Dense Composite Membrane Enabled by Poly(dopamine), Langmuir 25, 7368-7374.
    59. Aitken, C. L., Koros, W. J., and Paul, D. R. (1992) Effect of structural symmetry on gas transport properties of polysulfones, Macromolecules 25, 3424-3434.
    60. Ghosal, K., Chern, R. T., Freeman, B. D., Daly, W. H., and Negulescu, I. I. (1996) Effect of Basic Substituents on Gas Sorption and Permeation in Polysulfone, Macromolecules 29, 4360-4369.
    61. Deimede, V., Voyiatzis, G. A., Kallitsis, J. K., Qingfeng, L., and Bjerrum, N. J. (2000) Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications, Macromolecules 33, 7609-7617.
    62. Fu, Y. Z., and Manthiram, A. (2006) Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells, Journal of Power Sources 157, 222-225.
    63. Smitha, B., Devi, D. A., and Sridhar, S. (2008) Proton-conducting composite membranes of chitosan and sulfonated polysulfone for fuel cell application, International Journal of Hydrogen Energy 33, 4138-4146.
    64. Duca, M. D., Plosceanu, C. L., and Pop, T. (1998) Surface modifications of polyvinylidene fluoride (PVDF) under rf Ar plasma, Polymer Degradation and Stability 61, 65-72.
    65. Vargo, T. G., Jr., J. A. G., Meyer, A. E., and Baier, R. E. (1991) Hydrogen/liquid vapor radio frequency glow discharge plasma oxidation/hydrolysis of expanded poly(tetrafluoroethylene) (ePTFE) and poly(vinylidene fluoride) (PVDF) surfaces, Journal of Polymer Science Part A: Polymer Chemistry 29, 555-570.
    66. Park, Y. W., and Inagaki, N. (2003) Surface modification of poly(vinylidene fluoride) film by remote Ar, H2, and O2 plasmas, Polymer 44, 1569-1575.
    67. Waite, J. H. (2002) Adhesion a la Moule, Integrative and Comparative Biology 42, 1172-1180.
    68. Yu, M., and Deming, T. J. (1998) Synthetic Polypeptide Mimics of Marine Adhesives, Macromolecules 31, 4739-4745.
    69. Waite, J. H., Andersen, N. H., Jewhurst, S., and Sun, C. (2005) Mussel Adhesion: Finding the Tricks Worth Mimicking, The Journal of Adhesion 81, 297-317.
    70. Even, M. A., Wang, J., and Chen, Z. (2008) Structural Information of Mussel Adhesive Protein Mefp-3 Acquired at Various Polymer/Mefp-3 Solution Interfaces, Langmuir 24, 5795-5801.
    71. Ooka, A. A., and Garrell, R. L. (2000) Surface-enhanced Raman spectroscopy of DOPA-containing peptides related to adhesive protein of marine mussel, <I>Mytilus edulis</I>, Biopolymers 57, 92-102.
    72. Yu, M., Hwang, J., and Deming, T. J. (1999) Role of l-3,4-Dihydroxyphenylalanine in Mussel Adhesive Proteins, Journal of the American Chemical Society 121, 5825-5826.
    73. Dalsin, J. L., and Messersmith, P. B. (2005) Bioinspired antifouling polymers, Materials Today 8, 38-46.
    74. Waite, J. H., and Qin, X. (2001) Polyphosphoprotein from the Adhesive Pads of Mytilus edulis+, Biochemistry 40, 2887-2893.
    75. Bisaglia, M., Mammi, S., and Bubacco, L. (2007) Kinetic and Structural Analysis of the Early Oxidation Products of Dopamine, Journal of Biological Chemistry 282, 15597-15605.
    76. Xi, Z.-Y., Xu, Y.-Y., Zhu, L.-P., Wang, Y., and Zhu, B.-K. (2009) A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine), Journal of Membrane Science 327, 244-253.
    77. Bernsmann, F., Richert, L., Senger, B., Lavalle, P., Voegel, J.-C., Schaaf, P., and Ball, V. Use of dopamine polymerisation to produce free-standing membranes from (PLL-HA)n exponentially growing multilayer films, Soft Matter 4, 1621-1624.
    78. Bertazzo, A., Costa, C. V. L., Allegri, G., Favretto, D., and Traldi, P. (1999) Application of matrix-assisted laser desorption/ionization mass spectrometry to the detection of melanins formed from Dopa and dopamine, Journal of Mass Spectrometry 34, 922-929.
    79. Herlinger, E., Jameson, R. F., and Linert, W. (1995) Spontaneous Autoxidation of Dopamine, Journal of the Chemical Society, Perkin Transactions 2, 259-263.
    80. Yin, X.-B., and Liu, D.-Y. (2008) Polydopamine-based permanent coating capillary electrochromatography for auxin determination, Journal of Chromatography A 1212, 130-136.
    81. Wang, J., Xiao, L., Zhao, Y., Wu, H., Jiang, Z., and Hou, W. (2009) A facile surface modification of Nafion membrane by the formation of self-polymerized dopamine nano-layer to enhance the methanol barrier property, Journal of Power Sources 192, 336-343.
    82. Chen, J., Chen, X., Yin, X., Ma, J., and Jiang, Z. (2009) Bioinspired fabrication of composite pervaporation membranes with high permeation flux and structural stability, Journal of Membrane Science 344, 136-143.
    83. Pan, F., Jia, H., Qiao, S., Jiang, Z., Wang, J., Wang, B., and Zhong, Y. (2009) Bioinspired fabrication of high performance composite membranes with ultrathin defect-free skin layer, Journal of Membrane Science 341, 279-285.
    84. Liao, Y., Cao, B., Wang, W.-C., Zhang, L., Wu, D., and Jin, R. (2009) A facile method for preparing highly conductive and reflective surface-silvered polyimide films, Applied Surface Science 255, 8207-8212.
    85. Kang, S., and Elimelech, M. (2009) Bioinspired Single Bacterial Cell Force Spectroscopy, Langmuir 25, 9656-9659.
    86. Liu, A., Zhao, L., Bai, H., Zhao, H., Xing, X., and Shi, G. (2009) Polypyrrole Actuator with a Bioadhesive Surface for Accumulating Bacteria from Physiological Media, ACS Applied Materials & Interfaces 1, 951-955.
    87. Chen, H., Yuan, L., Song, W., Wu, Z., and Li, D. (2008) Biocompatible polymer materials: Role of protein-surface interactions, Progress in Polymer Science 33, 1059-1087.
    88. Schmidt, D. R., Waldeck, H., and Kao, W. J. (2009) Protein Adsorption to Biomaterials, pp 1-18.
    89. Tamada, Y., and Ikada, Y. (1993) Effect of Preadsorbed Proteins on Cell Adhesion to Polymer Surfaces, Journal of Colloid and Interface Science 155, 334-339.
    90. Arima, Y., and Iwata, H. (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers, Biomaterials 28, 3074-3082.
    91. Deligianni, D. D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J., and Missirlis, Y. F. (2001) Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption, Biomaterials 22, 1241-1251.
    92. Roach, P., Farrar, D., and Perry, C. C. (2005) Interpretation of Protein Adsorption:  Surface-Induced Conformational Changes, Journal of the American Chemical Society 127, 8168-8173.
    93. Dekker, A., Reitsma, K., Beugeling, T., Bantjes, A., Feijen, J., and van Aken, W. G. (1991) Adhesion of endothelial cells and adsorption of serum proteins on gas plasma-treated polytetrafluoroethylene, Biomaterials 12, 130-138.
    94. Morris, T. A., Peterson, A. W., and Tarlov, M. J. (2009) Selective Binding of RNase B Glycoforms by Polydopamine-Immobilized Concanavalin A, Analytical Chemistry 81, 5413-5420.
    95. He, H., Xie, Q., and Yao, S. (2005) An electrochemical quartz crystal impedance study on anti-human immunoglobulin G immobilization in the polymer grown during dopamine oxidation at an Au electrode, Journal of Colloid and Interface Science 289, 446-454.
    96. Lee, H., Rho, J., and Messersmith, P. B. (2009) Facile Conjugation of Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired Coatings, Advanced Materials 21, 431-434.
    97. Sureshkumar, M., and Lee, C.-K. Polydopamine coated magnetic-chitin (MCT) particles as a new matrix for enzyme immobilization, Carbohydrate Polymers In Press, Corrected Proof.
    98. Lee, N., Amy, G., Croué, J.-P., and Buisson, H. (2004) Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM), Water Research 38, 4511-4523.
    99. Bruggen, B. V. D., Vandecasteele, C., Gestel, T. V., Doyen, W., and Leysen, R. (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production, Environmental Progress 22, 46-56.
    100. Belfort, G., Davis, R. H., and Zydney, A. L. (1994) The behavior of suspensions and macromolecular solutions in crossflow microfiltration, Journal of Membrane Science 96, 1-58.
    101. Turker, M., and Hubble, J. (1987) Membrane fouling in a constant-flux ultrafiltration cell, Journal of Membrane Science 34, 267-281.
    102. Marshall, A. D., Munro, P. A., and Trägårdh, G. (1993) The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: A literature review, Desalination 91, 65-108.
    103. Kelly, S. T., and Zydney, A. L. (1995) Mechanisms for BSA fouling during microfiltration, Journal of Membrane Science 107, 115-127.
    104. Kelly, S. T., Senyo Opong, W., and Zydney, A. L. (1993) The influence of protein aggregates on the fouling of microfiltration membranes during stirred cell filtration, Journal of Membrane Science 80, 175-187.
    105. Bowen, W. R., and Gan, Q. (1991) Properties of microfiltration membranes: Flux loss during constant pressure permeation of bovine serum albumin, Biotechnology and Bioengineering 38, 688-696.
    106. Rana, D., and Matsuura, T. (2010) Surface Modifications for Antifouling Membranes, Chemical Reviews 110, 2448-2471.
    107. Sheldon, J. M., Reed, I. M., and Hawes, C. R. (1991) The fine-structure of ultrafiltration membranes. II. Protein fouled membranes, Journal of Membrane Science 62, 87-102.
    108. Ho, C.-C., and Zydney, A. L. (1999) Effect of membrane morphology on the initial rate of protein fouling during microfiltration, Journal of Membrane Science 155, 261-275.
    109. Boributh, S., Chanachai, A., and Jiraratananon, R. (2009) Modification of PVDF membrane by chitosan solution for reducing protein fouling, Journal of Membrane Science 342, 97-104.
    110. Nyström, M. (1989) Fouling of unmodified and modified polysulfone ultrafiltration membranes by ovalbumin, Journal of Membrane Science 44, 183-196.
    111. Hung, M. T., and Liu, J. C. (2006) Microfiltration for separation of green algae from water, Colloids and Surfaces B: Biointerfaces 51, 157-164.
    112. Hwang, K.-J., and Hwang, H.-C. (2006) The purification of protein in cross-flow microfiltration of microbe/protein mixtures, Separation and Purification Technology 51, 416-423.
    113. Gironès, M., Bolhuis-Versteeg, L. A. M., Lammertink, R. G. H., and Wessling, M. (2006) Flux stabilization of silicon nitride microsieves by backpulsing and surface modification with PEG moieties, Journal of Colloid and Interface Science 299, 831-840.
    114. Zhao, Y.-H., Zhu, B.-K., Kong, L., and Xu, Y.-Y. (2007) Improving Hydrophilicity and Protein Resistance of Poly(vinylidene fluoride) Membranes by Blending with Amphiphilic Hyperbranched-Star Polymer, Langmuir 23, 5779-5786.
    115. Liu, F., Xu, Y.-Y., Zhu, B.-K., Zhang, F., and Zhu, L.-P. (2009) Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes, Journal of Membrane Science 345, 331-339.
    116. Wang, P., Tan, K. L., Kang, E. T., and Neoh, K. G. (2002) Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane, Journal of Membrane Science 195, 103-114.
    117. Chiang, Y.-C., Chang, Y., Higuchi, A., Chen, W.-Y., and Ruaan, R.-C. (2009) Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property, Journal of Membrane Science 339, 151-159.
    118. Zhang, M., Nguyen, Q. T., and Ping, Z. (2009) Hydrophilic modification of poly (vinylidene fluoride) microporous membrane, Journal of Membrane Science 327, 78-86.
    119. Baroña, G. N. B., Cha, B. J., and Jung, B. (2007) Negatively charged poly(vinylidene fluoride) microfiltration membranes by sulfonation, Journal of Membrane Science 290, 46-54.
    120. Deng, B., Yu, M., Yang, X., Zhang, B., Li, L., Xie, L., Li, J., and Lu, X. (2010) Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid grafted poly(vinylidene fluoride) powder synthesized via pre-irradiation induced graft polymerization, Journal of Membrane Science 350, 252-258.
    121. Rahimpour, A., Madaeni, S. S., Zereshki, S., and Mansourpanah, Y. (2009) Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting, Applied Surface Science 255, 7455-7461.
    122. Liu, F., Du, C.-H., Zhu, B.-K., and Xu, Y.-Y. (2007) Surface immobilization of polymer brushes onto porous poly(vinylidene fluoride) membrane by electron beam to improve the hydrophilicity and fouling resistance, Polymer 48, 2910-2918.
    123. Hashim, N. A., Liu, F., and Li, K. (2009) A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer, Journal of Membrane Science 345, 134-141.
    124. Chang, Y., Ko, C.-Y., Shih, Y.-J., Quémener, D., Deratani, A., Wei, T.-C., Wang, D.-M., and Lai, J.-Y. (2009) Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization, Journal of Membrane Science 345, 160-169.
    125. Chen, Y., Deng, Q., Xiao, J., Nie, H., Wu, L., Zhou, W., and Huang, B. (2007) Controlled grafting from poly(vinylidene fluoride) microfiltration membranes via reverse atom transfer radical polymerization and antifouling properties, Polymer 48, 7604-7613.
    126. Koh, J. K., Kim, Y. W., Ahn, S. H., Min, B. R., and Kim, J. H. (2010) Antifouling poly(vinylidene fluoride) ultrafiltration membranes containing amphiphilic comb polymer additive, Journal of Polymer Science Part B: Polymer Physics 48, 183-189.
    127. Revanur, R., McCloskey, B., Breitenkamp, K., Freeman, B. D., and Emrick, T. (2007) Reactive Amphiphilic Graft Copolymer Coatings Applied to Poly(vinylidene fluoride) Ultrafiltration Membranes, Macromolecules 40, 3624-3630.
    128. Akthakul, A., Salinaro, R. F., and Mayes, A. M. (2004) Antifouling Polymer Membranes with Subnanometer Size Selectivity, Macromolecules 37, 7663-7668.
    129. Mu, C., Su, Y., Sun, M., Chen, W., and Jiang, Z. (2010) Remarkable improvement of the performance of poly(vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate, Journal of Membrane Science 350, 293-300.
    130. Cao, X., Ma, J., Shi, X., and Ren, Z. (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane, Applied Surface Science 253, 2003-2010.
    131. Yan, L., Li, Y. S., and Xiang, C. B. (2005) Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research, Polymer 46, 7701-7706.
    132. Yan, L., Li, Y. S., Xiang, C. B., and Xianda, S. (2006) Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance, Journal of Membrane Science 276, 162-167.
    133. Liao, C., Zhao, J., Yu, P., Tong, H., and Luo, Y. (2010) Synthesis and characterization of SBA-15/poly (vinylidene fluoride) (PVDF) hybrid membrane, Desalination 260, 147-152.
    134. Bottino, A., Capannelli, G., Monticelli, O., and Piaggio, P. (2000) Poly(vinylidene fluoride) with improved functionalization for membrane production, Journal of Membrane Science 166, 23-29.
    135. Hyun, J., Jang, H., Kim, K., Na, K., and Tak, T. (2006) Restriction of biofouling in membrane filtration using a brush-like polymer containing oligoethylene glycol side chains, Journal of Membrane Science 282, 52-59.
    136. Fan, Z., Wang, Z., Duan, M., Wang, J., and Wang, S. (2008) Preparation and characterization of polyaniline/polysulfone nanocomposite ultrafiltration membrane, Journal of Membrane Science 310, 402-408.
    137. Yan, M.-G., Liu, L.-Q., Tang, Z.-Q., Huang, L., Li, W., Zhou, J., Gu, J.-S., Wei, X.-W., and Yu, H.-Y. (2008) Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion, Chemical Engineering Journal 145, 218-224.
    138. Rahimpour, A., and Madaeni, S. S. (2007) Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties, Journal of Membrane Science 305, 299-312.
    139. Shi, Q., Su, Y., Zhu, S., Li, C., Zhao, Y., and Jiang, Z. (2007) A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane, Journal of Membrane Science 303, 204-212.
    140. Kang, G., Cao, Y., Zhao, H., and Yuan, Q. (2008) Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate membranes with excellent antifouling and solvent-resistant properties, Journal of Membrane Science 318, 227-232.
    141. Huang, H.-M., Liu, C.-H., Lee, V., Lee, C., and Wang, M.-J. Highly sensitive Glucose Biosensor based on CF4 Plasma Modified Interdigital Transducer Array (IDA) Microelectrode, Sensors and Actuators B: Chemical In Press, Accepted Manuscript.
    142. Park, J. Y., Acar, M. H., Akthakul, A., Kuhlman, W., and Mayes, A. M. (2006) Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes, Biomaterials 27, 856-865.
    143. Jee, T., Lee, H., Mika, B., and Liang, H. (2007) Effect of microstructures of PVDF on surface adhesive forces, Tribology Letters 26, 125-130.
    144. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry 72, 248-254.
    145. Tsai, W.-B., and Lin, J.-H. (2009) Modulation of morphology and functions of human hepatoblastoma cells by nano-grooved substrata, Acta Biomaterialia 5, 1442-1454.
    146. Bartlett, M., Bird, M. R., and Howell, J. A. (1995) An experimental study for the development of a qualitative membrane cleaning model, Journal of Membrane Science 105, 147-157.
    147. Jung, Y.-J., Kiso, Y., Yamada, T., Shibata, T., and Lee, T.-G. (2006) Chemical cleaning of reverse osmosis membranes used for treating wastewater from a rolling mill process, Desalination 190, 181-188.
    148. Kuzmenko, D., Arkhangelsky, E., Belfer, S., Freger, V., and Gitis, V. (2005) Chemical cleaning of UF membranes fouled by BSA, Desalination 179, 323-333.
    149. Pashkuleva, I., Marques, A., Vaz, F., and Reis, R. (2010) Surface modification of starch based biomaterials by oxygen plasma or UV-irradiation, Journal of Materials Science: Materials in Medicine 21, 21-32.
    150. Ulbricht, M., and Belfort, G. (1996) Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone, Journal of Membrane Science 111, 193-215.
    151. Liu, F., Zhu, B.-K., and Xu, Y.-Y. (2006) Improving the hydrophilicity of poly(vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers, Applied Surface Science 253, 2096-2101.
    152. Zhao, Y., and Urban, M. W. (1999) Spectroscopic Studies of Microwave Plasma Reactions of Maleic Anhydride on Poly(vinylidene fluoride) Surfaces:  Crystallinity and Surface Reactions, Langmuir 15, 3538-3544.
    153. Vico, S., Palys, B., and Buess-Herman, C. (2003) Hydration of a Polysulfone Anion-Exchange Membrane Studied by Vibrational Spectroscopy, Langmuir 19, 3282-3287.
    154. Song, Y.-Q., Sheng, J., Wei, M., and Yuan, X.-B. (2000) Surface modification of polysulfone membranes by low-temperature plasma-graft poly(ethylene glycol) onto polysulfone membranes, Journal of Applied Polymer Science 78, 979-985.
    155. Hopkins, J., and Badyal, J. P. S. (1996) CF4 Plasma Treatment of Asymmetric Polysulfone Membranes, Langmuir 12, 3666-3670.
    156. Koehler, J. A., Ulbricht, M., and Belfort, G. (2000) Intermolecular Forces between a Protein and a Hydrophilic Modified Polysulfone Film with Relevance to Filtration, Langmuir 16, 10419-10427.
    157. Kull, K. R., Steen, M. L., and Fisher, E. R. (2005) Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes, Journal of Membrane Science 246, 203-215.
    158. Sun, S., Yue, Y., Huang, X., and Meng, D. (2003) Protein adsorption on blood-contact membranes, Journal of Membrane Science 222, 3-18.
    159. Kelly, S. T., and Zydney, A. L. (1997) Protein fouling during microfiltration: Comparative behavior of different model proteins, Biotechnology and Bioengineering 55, 91-100.
    160. Persson, A., Jönsson, A.-S., and Zacchi, G. (2003) Transmission of BSA during cross-flow microfiltration: influence of pH and salt concentration, Journal of Membrane Science 223, 11-21.
    161. Marmur, A. (2003) Wetting on Hydrophobic Rough Surfaces:  To Be Heterogeneous or Not To Be?, Langmuir 19, 8343-8348.
    162. Mansur, H. S., Oréfice, R. L., and Mansur, A. A. P. (2004) Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy, Polymer 45, 7193-7202.

    無法下載圖示 全文公開日期 2015/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE