簡易檢索 / 詳目顯示

研究生: 王怡絜
I-chieh Wang
論文名稱: 以電漿表面改質聚乳酸-聚甘醇酸共聚物以及聚甲基丙烯酸甲酯之研究
The studies of plasma modified poly(lactic-co-glycolic acid) copolymer and poly(methyl methacrylate)
指導教授: 王孟菊
Meng-jiy Wang
口試委員: 魏大欽
Ta-chin Wei
蔡偉博
Wei-bor Tsai
李嘉平
Chia-pyng Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 130
中文關鍵詞: 聚乳酸-聚甘醇酸共聚物聚甲基丙烯酸甲酯表面界達電位
外文關鍵詞: PLGA, PMMA, zeta potential
相關次數: 點閱:427下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的為利用射頻電漿(13.56MHz)系統對聚乳酸-聚甘醇酸共聚物(PLGA)以及聚甲基丙烯酸甲酯(PMMA)兩種高分子材料進行改質,以觀察表面性質對L929-老鼠纖維母細胞貼附增生情形的影響。藉由溶劑揮發法製成的PLGA及PMMA薄膜,經由O2、CO2、N2、N2/H2、CF4、SF6六種非聚合性氣體電漿改質,依據親疏水性及表面電性,選擇N2/H2以及CF4此兩種具備相反結果的氣體來源作進一步分析探討,前者可使材料表面變為較親水且帶正電荷;後者使材料表面變為疏水且接植帶負電的官能基。
    由N2/H2氣體電漿改質,發現調整電漿處理參數(輸出功率;處理時間)對材料表面的親水性及表面界達電位皆帶來影響,而由細胞貼附結果可得知電漿功率影響程度較處理時間更為顯著;而調整N2/H2進料氣體比例對於表面界達電位以及細胞貼附結果,也可間接印證胺基的重要性,說明胺基的存在使得界達電位偏向正電也使得細胞貼附情況獲得改善。此外也探討使用不同溶劑製備出不同表面型態的PLGA及PMMA薄膜,結果顯示在奈米等級(方均根粗糙度<10nm)情況下,改質後的表面化學組成對於細胞貼附的影響遠大於表面物理型態。
    由CF4氣體電漿觀察調整電漿功率帶來的影響,不同於N2/H2電漿改質的地方是,CF4氣體電漿不管是對PLGA或PMMA薄膜均有較明顯的蝕刻現象發生,並使高分子薄膜表面變為疏水,但是經由改質後的PLGA及PMMA薄膜細胞相容性也同樣被提升,故推翻親疏水性以及表面電性影響細胞貼附此種說法,須更進一步去探討材料表面化學官能基所帶來的效應。
    由XPS分析改質後PLGA以及PMMA薄膜表面,針對N2/H2以及CF4氣體電漿改質,發現C-N鍵結含量以及F/C比例與與細胞貼附結果具有關聯性,而以改質後的PMMA薄膜細胞相容性較PLGA為佳。另外,N2/H2氣體電漿改質後的表面化學組成,與表面界達電位結果相關,顯示材料表面化學官能基對於細胞貼附的重要性,而電漿處理後表面官能基則影響親疏水性及表面電性。


    The goal of this work is to investigate the effects of plasma modification on surface properties of polymers and on the interactions between modified surfaces with L929 fibroblast cells. The two polymers used in this study are poly(DL-lactic-co-glycolic acid) (PLGA) and poly(methyl methacrylate) (PMMA). Polymer thin films were fabricated by solvent evaporation technique and treated by 6 different plasma gases (O2, CO2, N2, N2/H2, CF4 and SF6 gas). For the L929 fibroblast cells adhesion, two plasma gases, N2/H2 and CF4, were used to incorporate different functionalities and surface hydrophilicity on the surfaces of PLGA and PMMA. N2/H2 plasma altered the surface to more hydrophilic and caused more positive surface charge. On the other hand, CF4 plasma modified the surface of polymer to become hydrophobic and incorporated negative charged functional groups.
    For the surface treatment by using N2/H2 plasma, the effects of operational parameters such as treatment time, applied power on the physical-chemical properties of polymer thin films were evaluated by measuring wettability and zeta potential. The amount of adhered cells on the pristine and plasma modified samples was quantified by LDH assay and the results showed that the effect of applied power was more significant than the treatment time. The feed ratio of N2/H2 gases was also varied to study to examine the importance of the density of amine functionalities on the modulation of surface charge and biocompatibility. Moreover, by directly cultivating the cells on the same polymer with different surface morphology or with varied chemical compositions, it was found that the effect of chemical compositions of surface was more important than the surface topography on the proliferation of L-929 cells.
    For the polymers treated with CF4 plasma treatment, the AFM results showed that plasma etching phenomenon occurred and confirmed that the CF4 plasma incorporated hydrophobicity on the surfaces. Interestingly, CF4 plasma also effectively promoted cell adhesion and proliferation which suggested that the cell adhesion and proliferation were independent of the surface wettability and surface charge, while the effect of chemical functional groups incorporated on the surface of material played a more important role.
    The XPS results of plasma treated PLGA and PMMA revealed that C-N amount and F/C ratio increased significantly by applying N2/H2 and CF4 plasma, respectively. The trend of the increase of nitrogen or fluorine contents related closely to the cell behaviors and demonstrated that the modified PMMA showed better biocompatibility than the modified PLGA. In summary, we demonstrated an effective method to perform plasma surface modification on PLGA and PMMA. Moreover, the surface chemical functional groups are essential on biocompatibility of materials.

    摘要 i Abstract ii 致謝 iv 總目錄 v 圖目錄 x 表目錄 xix Abbreviation xxii 第一章 緒論 1 第二章 文獻回顧 3 2-1 高分子材料之特性與應用 3 2-1-1 聚乳酸-甘醇酸共聚合物 3 2-1-2 聚甲基丙烯酸甲酯 6 2-1-3 高分子材料表面改質之方法 7 2-2 電漿的定義 8 2-2-1 低溫電漿的特色 8 2-2-2 電漿於表面處理的反應機制 10 2-2-3 利用低溫電漿進行高分子表面改質 11 2-2-4 含氮電漿與含氟電漿 11 2-2-5 電漿處理增進高分子表面生物相容性 13 2-3 表面界達電位 14 2-3-1 表面界達電位之定義 14 2-3-2 表面界達電位的應用 16 2-4 生物相容性 17 第三章 實驗材料與方法 20 3-1 儀器原理及方法 21 3-1-1 減弱全反射-傅立葉轉換紅外線光譜儀(ATR-FTIR) 22 3-1-2 接觸角 (contact angle) 22 3-1-3 原子力顯微鏡 (Atomic force microscopy, AFM) 23 3-1-4 X-射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 24 3-1-5 薄膜界面電位分析儀 (Electro-kinetic analyzer, EKA) 25 3-1-6 酵素微盤光譜分析系統 (Enzyme-linked immunosorbent assay, ELISA) 26 3-1-7 統計分析方法 28 3-2 實驗藥品 28 3-2-1 高分子材料薄膜製備 28 3-2-2 LDH assay藥品配製 28 3-3 實驗儀器 29 3-4 高分子薄膜製備步驟 29 3-4-1 PLGA薄膜之製備與物性分析 31 3-4-1-1 ATR-FTIR分析 32 3-4-1-2 分子量測定 33 3-4-2 PLGA薄膜熱性質分析 34 3-4-3 PLGA薄膜表面型態分析 35 3-4-4 PMMA薄膜之製備與物性分析 36 3-4-4-1 ATR-FTIR分析 36 3-4-5 PMMA薄膜熱性質分析 38 3-4-6 PMMA薄膜表面型態分析 38 第四章 實驗結果 40 4-1 六種氣體電漿改質高分子薄膜表面特性之研究 40 4-1-1 PLGA薄膜表面改質以及性質分析 40 4-1-2 PMMA薄膜表面改質以及性質分析 41 4-2 N2/H2氣體電漿改質PLGA薄膜表面特性之研究 42 4-2-1 電漿處理條件對PLGA薄膜特性之影響 42 4-2-1-1 電漿參數對於表面水濕性的影響:接觸角測量 42 4-2-1-2 電漿參數對於表面電位的影響:界達電位分析 43 4-2-1-3 電漿參數對於細胞貼附的影響 44 4-2-1-4 電漿參數對於PLGA表面物理化學性質的影響:XPS分析 45 4-2-2 N2/H2氣體組成比例對PLGA薄膜特性之影響 46 4-2-2-1 氣體組成對於表面水濕性的影響:接觸角測量 47 4-2-2-2 氣體組成對於表面電位的影響:界達電位分析 47 4-2-2-3 氣體組成對於細胞貼附的影響 47 4-2-3 薄膜表面型態對PLGA薄膜特性之影響 48 4-2-3-1 薄膜表面型態分析:AFM分析 48 4-2-3-2 薄膜表面型態對於表面水濕性的影響:接觸角測量 49 4-2-3-3 薄膜表面型態對於細胞貼附的影響 49 4-3 N2/H2氣體電漿改質PMMA薄膜表面特性之研究 50 4-3-1 電漿處理條件對PMMA薄膜特性之影響 50 4-3-1-1 電漿參數對於表面水濕性的影響:接觸角測量 50 4-3-1-2 電漿參數對於表面電位的影響:界達電位分析 50 4-3-1-3 電漿參數對於細胞貼附的影響 51 4-3-1-4 電漿參數對於PMMA表面物理化學性質的影響:XPS分析 52 4-3-2 N2/H2氣體組成比例對PMMA薄膜特性之影響 53 4-3-2-1 氣體組成對於表面水濕性的影響:接觸角測量 53 4-3-2-2 氣體組成對於表面電位的影響:界達電位分析 53 4-3-2-3 氣體組成對於細胞貼附的影響 53 4-3-3 薄膜表面型態對PMMA薄膜特性之影響 54 4-3-3-1 薄膜表面型態分析:AFM分析 54 4-3-3-2 薄膜表面型態對於表面水濕性的影響:接觸角測量 54 4-3-3-3 薄膜表面型態對於細胞貼附的影響 55 4-4 CF4氣體電漿改質PLGA薄膜表面特性之研究 55 4-4-1 電漿功率對PLGA薄膜特性之影響 56 4-4-1-1 電漿功率對於表面水濕性及表面電位的影響 56 4-4-1-2 電漿功率對於薄膜表面形態的影響:AFM分析 56 4-4-1-3 電漿功率對於細胞貼附的影響 57 4-4-1-4 電漿功率對於PLGA表面物理化學性質的影響:XPS分析 57 4-5 CF4氣體電漿改質PMMA薄膜表面特性之研究 58 4-5-1 電漿功率對PMMA薄膜特性之影響 58 4-5-1-1 電漿功率對於表面水濕性及表面電位的影響 58 4-5-1-2 電漿功率對於薄膜表面形態的影響:AFM分析 59 4-5-1-3電漿功率對於細胞貼附的影響 59 4-5-1-4 電漿功率對於PMMA表面物理化學性質的影響:XPS分析 59 第五章 討論 104 5-1 高分子材料表面親疏水性對細胞相容性之影響 104 5-1-1 N2/H2氣體電漿改質對PLGA薄膜之影響 104 5-1-2 N2/H2氣體電漿改質對PMMA薄膜之影響 106 5-1-3 CF4氣體電漿改質對PLGA及PMMA薄膜之影響 107 5-2 高分子薄膜表面界達電位對細胞相容性之影響 108 5-2-1 N2/H2氣體電漿功率之影響 108 5-2-2 N2/H2氣體電漿組成比例之影響 109 5-3 高分子薄膜表面化學官能基對薄膜表面界達電位之影響 110 5-3-1 PLGA薄膜表面化學官能基之影響 110 5-3-2 PMMA薄膜表面化學官能基之影響 111 5-4 高分子薄膜表面化學官能基對細胞相容性之影響 112 5-4-1 N2/H2電漿改質後PLGA薄膜表面化學官能基之影響 113 5-4-2 N2/H2電漿改質後PMMA薄膜表面化學官能基之影響 113 5-4-3 PLGA薄膜與PMMA薄膜於N2/H2電漿改質後之比較 114 5-4-4 CF4電漿改質後PLGA薄膜表面化學官能基之影響 115 5-4-5 CF4電漿改質後PMMA薄膜表面化學官能基之影響 116 5-4-6 PLGA薄膜與PMMA薄膜於CF4電漿改質後之比較 116 5-5 高分子薄膜表面型態對細胞相容性之影響 117 5-6 不同氣體電漿來源對細胞相容性之影響 118 5-7 結論 120 5-8 建議 122 第六章 參考文獻 123

    1. Gross, R.A. and B. Kalra, Biodegradable Polymers for the Environment. Science, 2002. 297(5582): p. 803-807.
    2. Li, S. and S. McCarthy, Further investigations on the hydrolytic degradation of poly (-lactide). Biomaterials, 1999. 20(1): p. 35-44.
    3. A-MCaJ., H., Classification of biodegradable polymers. 2000.
    4. Richmond, R., T.V. Macfarlane, and J.F. McCord, An evaluation of the surface changes in PMMA biomaterial formulations as a result of toothbrush/dentifrice abrasion. Dental Materials, 2004. 20(2): p. 124-132.
    5. Thomson, R.C., et al., Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. Journal of Biomaterials Science, Polymer Edition, 1996. 7: p. 23-38.
    6. Vert, M., et al., Something new in the field of PLA/GA bioresorbable polymers? Journal of Controlled Release, 1998. 53(1-3): p. 85-92.
    7. Hakkarainen, M., A.-C. Albertsson, and S. Karlsson, Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polymer Degradation and Stability, 1996. 52(3): p. 283-291.
    8. inodot, et al., Degradation of PLA, PLGA homo- and copolymers in the presence of serum albumin: a spectroscopic investigation. Polymer International, 2000. 49(7): p. 728-734.
    9. Ishaug-Riley, S.L., et al., Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials, 1998. 19(15): p. 1405-1412.
    10. MacRae, S.M., M. Matsuda, and R. Yee, The Effect of Long-term Hard Contact Lens Wear on the Corneal Endothelium. Eye & Contact Lens, 1985. 11(4): p. 322-326.
    11. Handbook of biomedical engineering / edited by Jacob Kline. Handbooks in science and technology, ed. J. Kline. 1988, San Diego :: Academic Press.
    12. Charnley, J., Acrylic Cement in Orthopaedic Surgery. 1970.
    13. Eppley, B.L., Biomechanical Testing of Alloplastic PMMA Cranioplasty Materials. Journal of Craniofacial Surgery, 2005. 16(1): p. 140-143.
    14. Yasuda, H., et al., Ultrathin coating by plasma polymerization applied to corneal contact lens. Journal of Biomedical Materials Research, 1975. 9(6): p. 629-643.
    15. Fakes, D.W., et al., Surface modification of a contact lens co-polymer by plasma-discharge treatments. Surface and Interface Analysis, 1987. 10(8): p. 416-423.
    16. Zhu, Y., et al., Layer-by-Layer Assembly To Modify Poly(l-lactic acid) Surface toward Improving Its Cytocompatibility to Human Endothelial Cells. Biomacromolecules, 2003. 4(2): p. 446-452.
    17. Bongiovanni, R., et al., Surface modification of polyethylene for improving the adhesion of a highly fluorinated UV-cured coating. European Polymer Journal, 2007. 43(9): p. 3787-3794.
    18. Ruckenstein, E. and Z.F. Li, Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Advances in Colloid and Interface Science, 2005. 113(1): p. 43-63.
    19. Altankov, G., K. Richau, and T. Groth, The role of surface zeta potential and substratum chemistry for regulation of dermal fibroblasts interaction. Materialwissenschaft und Werkstofftechnik, 2003. 34(12): p. 1120-1128.
    20. Lieberman, M.A. and A.J. Lichtenberg, Principles of plasma discharges and materials processing. 2005.
    21. 高正雄, 超LSI時代 : 電漿化學 Plasma chemistry. 1999: 復漢出版社.
    22. Chu, P.K., et al., Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 2002. 36(5-6): p. 143-206.
    23. Huang, H., et al., Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment. Applied Physics Letters, 2005. 87(16): p. 163123-3.
    24. Chang, C.P., C.S. Pai, and J.J. Hsieh, Ion and chemical radical effects on the step coverage of plasma enhanced chemical vapor deposition tetraethylorthosilicate films. Journal of Applied Physics, 1990. 67(4): p. 2119-2126.
    25. Chan, C.-M., Polymer surface modification and characterization. 1993.
    26. Hsieh, Y.-L. and M. Wu, Residual reactivity for surface grafting of acrylic acid on argon glow-discharged poly(ethylene terephthalate) (PET) films. Journal of Applied Polymer Science, 1991. 43(11): p. 2067-2082.
    27. Akovali, G. and M.A. Akman, Mechanical Properties of Plasma Surface-Modified Calcium Carbonate-Polypropylene Composites. Polymer International, 1997. 42(2): p. 195-202.
    28. Ng, C.M., et al., Surface modification of plasma-pretreated high density polyethylene films by graft copolymerization for adhesion improvement with evaporated copper. Polymer Engineering & Science, 2000. 40(5): p. 1047-1055.
    29. Suchaneck, G., et al., Plasma surface modification of hydrogel thin films. Surface and Coatings Technology, 2003. 174-175: p. 816-820.
    30. Hegemann, D., H. Brunner, and C. Oehr, Plasma treatment of polymers for surface and adhesion improvement. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003. 208: p. 281-286.
    31. Mihailescu, I.N., et al., Optical studies of carbon nitride thin films deposited by reactive pulsed laser ablation of a graphite target in low pressure ammonia. Thin Solid Films, 1998. 323(1-2): p. 72-78.
    32. Moon, J., et al., Formation of TiN by nitridation of magnetron sputtered Ti films using microwave plasma CVD. Journal of Crystal Growth, 1991. 115(1-4): p. 589-595.
    33. Yan, M.-G., et al., Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion. Chemical Engineering Journal, 2008. 145(2): p. 218-224.
    34. Wofford, B., et al., Abatement of greenhouse gases using surface wave plasmas, in Environmental issues in the electronics and semiconductor industries: proceedings of the second international symposium. 1999. p. 79.
    35. Dekker, A., et al., Adhesion of endothelial cells and adsorption of serum proteins on gas plasma-treated polytetrafluoroethylene. Biomaterials, 1991. 12(2): p. 130-138.
    36. Tamada, Y. and Y. Ikada, Cell adhesion to plasma-treated polymer surfaces. Polymer, 1993. 34(10): p. 2208-2212.
    37. Lee, J.H., et al., Cell behaviour on polymer surfaces with different functional groups. Biomaterials, 1994. 15(9): p. 705-711.
    38. Yi-Cheng, H., et al., Surface modification and characterization of chitosan or PLGA membrane with laminin by chemical and oxygen plasma treatment for neural regeneration. Journal of Biomedical Materials Research Part A, 2007. 82A(4): p. 842-851.
    39. 張開, 高分子界面科學. 1997, 北京: 中國石化.
    40. Cai, K., et al., Surface functionalized titanium thin films: Zeta-potential, protein adsorption and cell proliferation. Colloids and Surfaces B: Biointerfaces, 2006. 50(1): p. 1-8.
    41. http://www.silver-colloids.com/Tutorials/Intro/pcs18A.html.
    42. 王盈錦 and 林峰輝, 生物醫學材料. 2002, 台北市: 合記.
    43. Elimelech, M., H.C. William, and J.J. Waypa, Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Desalination, 1994. 95: p. 269-286.
    44. Tusek, L., et al., Surface characterisation of NH3 plasma treated polyamide 6 foils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001. 195(1-3): p. 81-95.
    45. Lehock, M., et al., Plasma surface modification of polyethylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003. 222(1-3): p. 125-131.
    46. Nitta, Y., et al., Diamond-like carbon thin film with controlled zeta potential for medical material application. Diamond and Related Materials, 2008. 17(11): p. 1972-1976.
    47. Gronowicz, G. and M.B. McCarthy, Response of human osteoblasts to implant materials: Integrin-mediated adhesion. Journal of Orthopaedic Research, 1996. 14(6): p. 878-887.
    48. Hamerli, P., et al., Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes. Biomaterials, 2003. 24(22): p. 3989-3999.
    49. Tsuang, Y.-H., et al., In vitro cell behavior of osteoblasts on Pyrost bone substitute. The Anatomical Record, 1997. 247(2): p. 164-169.
    50. George, B. and P. Mclntyre, 紅外線光譜分析法. 2001: 高立出版.
    51. 王應瓊, 儀器分析. 1983, 台北市: 中央圖書供應社.
    52. 劉智生 and 洪儒生, ESCA-X射線光電子能譜儀. 化工技術. 15.
    53. M&ouml;ckel, D., et al., Tangential flow streaming potential measurements: Hydrodynamic cell characterization and zeta potentials of carboxylated polysulfone membranes. Journal of Membrane Science, 1998. 145(2): p. 211-222.
    54. Oo, M.H. and S.L. Ong, Implication of zeta potential at different salinities on boron removal by RO membranes. Journal of Membrane Science, 2010. 352(1-2): p. 1-6.
    55. http://www.gbiosciences.com/CytoscanLDHCytotoxicityAssayKit.aspx.
    56. Tian, Y., et al., Influence of Solvents on the Formation of Honeycomb Films by Water Droplets Templating. Macromolecular Chemistry and Physics, 2006. 207(5): p. 545-553.
    57. Tian, Y., et al., The formation of honeycomb structure in polyphenylene oxide films. Polymer, 2006. 47(11): p. 3866-3873.
    58. Strawhecker, K.E., et al., The Critical Role of Solvent Evaporation on the Roughness of Spin-Cast Polymer Films. Macromolecules, 2001. 34(14): p. 4669-4672.
    59. Larrieu, J., et al., Analysis of microscopic modifications and macroscopic surface properties of polystyrene thin films treated under DC pulsed discharge conditions. Surface and Interface Analysis, 2005. 37: p. 544-554.
    60. Yang, J., J. Bei, and S. Wang, Enhanced cell affinity of poly (,-lactide) by combining plasma treatment with collagen anchorage. Biomaterials, 2002. 23(12): p. 2607-2614.
    61. Kr&acute;al’, M., A. Ogino, and M. Nagatsu, Effect of hydrogen on amino group introduction onto the polyethylene surface by surface-wave plasma chemical modification. PHYSICS D: APPLIED PHYSICS, 2008. 41.
    62. Uyama, H. and O. Matsumoto, Synthesis of Ammonia in High-Frequency Discharges.II. Synthesis of Ammonia in a Microwave DischargeUnder Various Conditions. Plasma Chemistry and Plasma Processing, 1989. 9: p. 421~431.
    63. Lampin, M., et al., Correlation between substratum roughness and wettability, cell adhesion, and cell migration. Journal of Biomedical Materials Research, 1997. 36(1): p. 99-108.
    64. Britland, S., et al., Micropatterned substratum adhesiveness: A model for morphogenetic cues controlling cell behavior. Experimental Cell Research, 1992. 198(1): p. 124-129.
    65. Wilson, D.J., R.L. Williams, and R.C. Pond, Plasma modification of PTFE surfaces. Part I: Surfaces immediately following plasma treatment. Surface and Interface Analysis, 2001. 31(5): p. 385-396.
    66. Hopkins, J. and J.P.S. Badyal, CF4 Plasma Treatment of Asymmetric Polysulfone Membranes. Langmuir, 1996. 12(15): p. 3666-3670.
    67. McCord, M.G., et al., Surface analysis of cotton fabrics fluorinated in radio-frequency plasma. Journal of Applied Polymer Science, 2003. 88(8): p. 2038-2047.
    68. van Wachem, P.B., et al., Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials, 1985. 6(6): p. 403-408.
    69. Ishaug-Riley, S.L., et al., Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials, 1999. 20(23-24): p. 2245-2256.
    70. Griesser, H.J., et al., Growth of human cells on plasma polymers: Putatibe role of amine and amide groups. Biomaterials Science Polymer Edition, 1994. 5: p. 531~554.

    無法下載圖示 全文公開日期 2015/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE