簡易檢索 / 詳目顯示

研究生: 劉建宏
Chien-hung Liu
論文名稱: 利用四氟化碳電漿處理指叉狀電極並應用於葡萄糖生物感測器
Investigation of CF4 Plasma Modified Interdigital Transducers (IDT) and Its Application On Glucose Biosensor
指導教授: 王孟菊
Meng-jiy Wang
口試委員: 魏大欽
Ta-chin Wei
徐振哲
Cheng-che Hsu
何明樺
Ming-hua Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: 電漿生物感測器指叉狀電極
外文關鍵詞: plasma, biosensor, interdigital transducer
相關次數: 點閱:349下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的是利用指叉狀電極作為電化學葡萄糖生物感測器。感測器的電極製作是利用半導體元件中微影製程技術,並以光阻舉離(lift off)程序,製備間距為7 m的指叉狀電極。電極材料的選擇方面,由於金電極具備良好的催化速率,及有效降低反應過電位之特性。因此,本研究中選用金電極做為葡萄糖生物感測器之電極材料。
    在電極的製備最適化方面,為了使電極不受破壞,在電極表面鍍上SiO2薄膜以保護電極。並於實驗中以加入電子傳遞介質以降低反應過電位。同時,為了提升反應電流,利用四氟化碳電漿,處理指叉狀電極表面。四氟化碳電漿處理電極的主要功能為: (1)增加電極表面粗糙度,提高反應液滴與電極之接觸面積;(2)蝕刻掉部份的SiO2保護層,使金薄膜層部分裸露,以增加電極之導電性。由於電漿處理可成功增加電流反應,本研究同時探討不同電漿處理時間,對電極表面及感測器靈敏度之影響,進一步的找出最佳的實驗參數。並利用表面分析方法,探討經四氟化碳電漿處理後之指叉狀電極,包括利用X-射線光電子能譜儀、原子力顯微鏡(AFM)、及接觸角(Contact angle)量測分析等,進一步了解電極表面元素、型態及親疏水性之變化,並解釋四氟化碳電漿處理與感測器靈敏度之關係。
    在感測器的干擾測試上,因為電子傳遞介質的加入,降低了反應過電位並有效避開其他干擾物質之影響。在人體血液測試方面,自製葡萄糖生物感測器其準確性與市售Johnson & Johnson血糖測試片相近。


    The goal of this research is to use high-density interdigital transducer (IDT) as electrochemical electrodes to develop a novel glucose biosensor. The fabrication of the IDT electrode was achieved by using lithography, photoresist, lift-off and surface coating procedures to create IDT electrode with 7μm electrode spacing.
    This work demonstrated that the incorporation of electron mediator (ferricyanide) can reduce the overpotential in the electrochemistry. On the other hand, due to IDT electrode covered by SiO2 film, the conductivity of electrode is reduced, and the current response is also decreased. In this study, CF4 plasma is used to treat the electrode surface in order to enhance the current response, and the important fetures of CF4 plasma treatment include: (1) to increase the roughness of electrode surface; (2) to etch a part of the SiO2 protective layer and, to (3) expose Au metal layer in order to increase the current response.
    X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and the water contact angle measurements are conducted to investigate the effect of CF4 plasma treatments. Moreover, the interference tests facilitated by using uric acid and ascorbic acid, as well as using human blood demonstrated the IDT based electrodes function linearly with glucose concentration and with high accuracy.

    【摘要】 I Abstract II 【誌謝】 III 【圖目錄】 VII 【表目錄】 X 第一章、緒論 1 1-1、前言 1 1-2 研究目標 2 第二章 文獻回顧 4 2-1 感測器簡介 4 2-1-1感測器基本原理: 4 2-2化學感測器簡介 6 2-3生物感測器之簡介 6 2-3-1生物感測器的種類 7 2-3-2訊號轉換器之種類 9 2-4 酵素簡介 12 2-4-1 酵素特色 12 2-4-2 酵素單位 12 2-4-3 酵素的分類 12 2-4-4 酵素之專一性 13 2-4-5 酵素之固定方法 14 2-5 酵素型生物感測器簡介 18 2-5-1 電化學電子傳遞介質 20 2-6 表面聲波元件(SAW)簡介 22 2-6-1表面聲波定義 22 2-6-2表面聲波元件(SAW)之應用 23 2-6-3表面聲波感測器之原理 25 2-6-4表面聲波元件之薄膜技術(Thin film technology) 26 2-7 電漿技術 29 2-7-1電漿之定義 29 2-7-2電漿的產生 29 2-7-3電漿與聚合物的相互影響 31 2-7-4電漿蝕刻 32 2-7-5二氧化矽蝕刻反應 33 第三章: 研究方法與儀器原理 35 3-1 研究目的 35 3-2 實驗設備 35 3-3 試藥 38 3-4 實驗材料 38 3-5 儀器與設備 39 3-6 溶液的配製 39 3-6-1 PBS緩衝溶液之製備 39 3-6-2 CBS 緩衝溶液之製備 39 3-6-3 Glucose 溶液之配製 39 3-6-4 Glucose oxidase 溶液之配製 40 3-7 指叉狀電極製作 40 3-8 儀器原理 42 3-8-1循環伏安法(Cyclic Voltammetry) 42 3-8-2原子力顯微鏡(AFM) 45 3-8-3 X-射線光電子能譜儀 45 3-8-4接觸角量測(Contact Angle) 48 第四章 結果與討論 49 四-(1). 探討製備指叉狀電極的最佳參數 49 4-1 指叉狀電極之製備: 49 4-2 探討電極厚度對過氧化氫(H2O2)直接催化之影響: 50 4-3 探討不同電極材料對過氧化氫(H2O2)直接催化之影響: 51 4-4 探討指叉狀電極間距為7 μm時的電流反應: 52 4-5 探討利用二氧化矽(SiO2)薄膜保護指叉狀電極之電化學反應: 53 4-6 探討利用電子傳遞介質於電化學循環伏安法量測之影響 55 4-7 利用電子傳遞介質於葡萄糖感測之循環伏安法分析 56 4-8 探討四氟化碳電漿處理指叉狀電極表面之影響 58 四-(2). 探討表面處理對於指叉狀電極的影響 58 4-9 探討電漿處理時間對反應電流之影響 59 4-10 X-射線光電子能譜儀(XPS) 光譜分析 60 4-11 電極表面型態分析(原子力顯微鏡,AFM) 61 4-12 接觸角量測(Water contact angle) 63 4-13 葡萄糖氧化酵素負載量之影響 64 4-14 葡萄糖生物感測器之最適電位 65 4-15 干擾測試 69 4-16 自製葡萄糖生物感測器與市售血糖感測器之檢量線比較 71 4-17 自製葡萄糖生物感測器用於人體血液之測試情況 72 4-18 穩定性測試 75 第五章 結論與建議 76 5-1 結論 76 5-2 建議 78 第六章 參考文獻 79

    1. Clark LCJ, Lyons C. Electrode systems for continuous monitoring in car diovascular surgery. Annals of the New York Academy of Sciences 1962;102:29-45.
    2. Wang J. Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis 2001;13(12):983-988.
    3. Yang X, Zhang G. Diffusion-Controlled Redox Cycling at Nanoscale Interdigitated Electrodes. Excerpt from the Proceedings of the COMSOL Multiphysics User's Conference 2005 Boston; 2005; 2005.
    4. Yang X, Zhang G. The voltammetric performance of interdigitated electrodes with different electron-transfer rate constants. Sensor and Actuators B 2007;126:624-631.
    5. Shen J, Liu C-C. Development of a screen-printed cholesterol biosensor: Comparing the performance of gold and platinum as the working electrode material and fabrication using a self-assembly approach. Sensors and Actuators B 2007;120:417-425.
    6. Shen J, Dudik L, Liu C-C. An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensors and Actuators B 2007;125:106-113.
    7. 黃炳照, 莊睦賢. 電化學感測器. 化工技術, 1999.
    8. 王宗興. 分子辨識與生物感測器. 2001.
    9. Diamond D. Principles of chemical and biological sensors. New York: John Wiley & Sons, 1998.
    10. 謝振傑. 光纖生物感測器. 物理雙月刊, 2006.
    11. 田蔚城. 生物技術發展與應用: 九州圖書文物, 1997.
    12. A. Chaubey, Malhotra BD. Mediated biosensors. Biosensors & Bioelectronics 2002;17:441-456.
    13. Lindgren A, Ruzgas T, Gorton L, Csoregi E, Ardila GB, Sakharov IY, et al. Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer. Biosensors & Bioelectronics 2000;15:491-497.
    14. Bakker E, Qin Y. Electrochemical Sensors. Anal Chem 2006;78.
    15. Brian R, Eggins. Chemical Sensors and Biosensors: WILWY, 2005.
    16. Peter B, Luppa LJ, Sokoll DW. Immunosensors-principles and applications to clinical chemistry. Clinica Chimica Acta 2001;314:1-26.
    17. 陳治誠. 生化感測器技術簡介. 科儀新知, 1993.
    18. Spichiger-Keller UE. Chemical Sensors and Biosensors for Medical and Biological Applications: Wiley-VCH, 1998.
    19. 許峰碩. 奈米碳黑在免疫層析檢測上的應用: 國立中興大學.
    20. 吳昭燕. 生化反應的催化劑. 科學發展, 2003.
    21. 劉英俊. 酵素工程: 中央圖書出版社.
    22. 陳國誠. 微生物酵素工程學: 藝軒出版社.
    23. Guilbault GG, Lubrano GJ. An enzyme electrode for the amperometric determination of glucose. Analytica Chimica Acta 1973;64:439-455.
    24. Cass AEG, Davis G, Francis GD, Hill HAO, J.Aston W, Higgins IJ, et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 1984;56:667-671.
    25. Frew J, Hill HA. Electrochemical biosensors. Anal Chem 1987;59(15):933A-944A.
    26. Yang L, Li. Yanbin, Erf FG. Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7. Anal Chem 2004;76:1107-1113.
    27. Rayleigh L. On waves propagating along the plane surface of an elastic solid: Proc. London Math. Soc, 1885.
    28. White RM, Voltmer FW. Direct piezoelectric coupling to surface elastic wave. Applied Physics Letters 1965;7(33):314-316.
    29. Wang J. Electrochemical Glucose Biosensors. Chem Rev 2008;108:814-825.
    30. Kim Y, Park J, Lee K, Choi S, Yoon H, Sohn J. The evaluation of the attenuated PSM performance as the shifter transmittance and illumination systems. Part of the SPIE Symposium on Photomask and X-Ray Mask Technology VI Yokohama,. Japan: SPIE, 1999. p. 332-339.
    31. Lee W-Y, Lee KS, Kim T-H, Shin M-C, Park J-K. Microfabricated Conductometric Urea Biosensor Based on Sol-Gel Immobilized Urease. Electroanalysis 2000;12(1).
    32. Niwa O, Kurita R, Liu Z, Horiuchi T, Torimitsu K. Subnanoliter Volume Wall-Jet Cells Combined with Interdigitated Microarray Electrode and Enzyme Modified Planar Microelectrode. Anal Chem 2000;72(5):949-955.
    33. Sangodkar H, Sukeerthi S, Srinivasa RS, Lal R, Contractor AQ. A Biosensor Array Based on Polyaniline. Anal Chem 1996;68(5):779-783.
    34. Ballantine, Jr. DS, White RM, Martin SJ, Ricco AJ, Frye GC, et al. Acoustic Wave Sensors Theory, Design, and Physico-Chemical Applications, 1997.
    35. Curie J, Curie P. An oscillating quartz crystal mass detector. Rendu 1880;91:294-296.
    36. 黃仕泓. 表面聲波感測器之前瞻研究. 物理雙月刊, 2004.
    37. Bard AJ, Craydton JA, Kittlessen GP, Shea TV, Wrighton MS. Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes. Anal Chem 1986;58.
    38. Morf WE. Theoretical treatment of the amperometric current response of multiple microelectrode arrays. Analytica Chimica Acta 1996;330:139-149.
    39. Sanderson DG, Anderson LB. Filar electrodes: steady-state currents and spectroelectrochemistry at twin interdigitated electrodes. Anal Chem 1985;56.
    40. 陳冠榮. 以奈米金修飾電極製備電流式免疫型感測器: 國立台灣科技大學.
    41. 施敏. 半導體元件物理與製作技術: 國立交通大學出版社.
    42. Inagaki N. Plasma surface modification and plasma polymerization: Western Hemisphere by Technomic Publishing Company, 1996.
    43. 洪昭南. 電漿反應器. 化工技術, 1995.
    44. 楊忠諺. 乾式蝕刻於矽微加工及微機電方面之應用. 毫微米通訊.
    45. 宋雲傑. 矽與氧化矽蝕刻技術之研究: 國立成功大學.
    46. 劉吉峰. 低介電常數奈米孔洞二氧化矽薄膜的乾式蝕刻特性研究: 國立交通大學.
    47. 羅正忠. 半導體製程技術導論: 歐亞圖書有限公司, 2002.
    48. 胡啟章. 電化學原理與方法: 五南文化事業.
    49. 汪建民. 材料分析: 中國材料科學學會.
    50. 簡翰中. 化學分析電子儀在分析技術上的最新應用. 電子月刊, 2004.
    51. Vickerman JC. Eelectron Spectroscopy for Chemical Analysis: John Wiley & Sons, 1997.
    52. Fuchang W, Ruo Y, Yaqin C. A new amperometric biosensor for hydrogen peroxide determination based on HRP-nanogold-PTH-nanogold-modified carbon paste electrodes. European Food Research and Technology 2007;225:95–104.
    53. 楊啟榮, 李清峰, 施建富. 表面聲波生化感測器原理與應用技術. 科儀新知, 2004.
    54. Lee S-H, Fang H-Y. Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate-chitosan oligomers mixture. Sensors and Actuators B 2006;117:236-243.
    55. D’Agostino R, Cramarossa F, Fracassi F, Illuzzi F. In Plasma deposition, Treatment and Etching of Polymers: Academic Press: New York, 1990.

    無法下載圖示 全文公開日期 2014/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE