簡易檢索 / 詳目顯示

研究生: 劉修吉
Hsiu-chi Liu
論文名稱: 利用電漿聚合方法製備賽吩薄膜及其物理化學性質分析
Preparations and Characterizations of Plasma Polymerized Thiophene Thin Films
指導教授: 王孟菊
Meng-jiy Wang
口試委員: 陳克紹
Ko-shao Chen
魏大欽
Ta-chin Wei
林昇佃
Shawn D. Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 51
中文關鍵詞: 連續式電漿電漿聚合共軛高分子賽吩導電性高分子
外文關鍵詞: continuous plasma, plasma polymerization, conjugated polymer, thiophene, conductive polymer
相關次數: 點閱:432下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為利用賽吩單體,以連續式電漿聚合方式,製備賽吩薄膜。對於所製備之賽吩薄膜,將探討電漿聚合時間、電漿功率以及碘蒸氣摻雜的時間對於賽吩薄膜性質之影響。
    由實驗結果可以發現,賽吩薄膜的沈積速率與單體沈積時間之關係呈現反比,表示在短時間下,賽吩具有較高的沈積效能,隨著電漿功率的提升,薄膜的沈積速率會上升;薄膜的厚度隨著沈積時間與電漿功率的增加,會有明顯的提升;粗糙度與沈積時間之關係呈現正比的趨勢,但隨著電漿功率的增加,粗糙度卻是先降後升,是因為受到薄膜表面沾附的微粒與表面型態的影響造成;利用霍爾效應量測系統和交流阻抗儀量測薄膜的電學性質,可以發現賽吩薄膜在摻雜後的導電度有明顯的提升,但因為膜厚太薄,四點探針量測儀和電流伏特光度儀皆不適用;比較碘摻雜前後的薄膜結構的變化,由XPS光譜結果顯示,摻雜後,薄膜表面的碘元素確實有增加,表示摻雜反應有進行,因此使得摻雜後的導電度明顯的提升。
    共軛高分子與其衍生物,經過適當的處理,能提高共軛高分子本身能導通電荷的效應,將導電度提升,使其能夠應用在廣泛的領域上,加上高分子本身具有高透明度、可彎曲性、質量輕、價格相對較低、易於加工與耐用性等重要特性,可用來取代金屬作為光電工業的替代品。本研究希望利用連續式電漿製備賽吩高分子膜,並選取不同的電漿參數條件,探討不同的電漿參數條件對於賽吩薄膜的性質影響,找出薄膜性質對於應用上較為適用以及能夠提升導電度的實驗條件,期望賽吩薄膜能夠應用於工業上。


    The goal of this research is to prepare thiophene thin films by continuous plasma polymerization method. The effect of operational parameters such as effects of doping, deposition time and applied plasma power on the physical-chemical properties of polymerized thin films were evaluated by studying their thickness, deposition rate, surface morphology, conductivity and chemical compositions.
    The results shown that the deposition rates were proportional to the applied plasma power and inversely proportional to the deposition time. The thickness of plasma polymerized thiophene thin films was proportional to the deposition time and the applied power. The surface morphology and roughness analyzed by AFM indicated that the thin films prepared by plasma polymerization were pin-hole free, homogeneous and very smooth. The XPS results helped to observe the evolution of thiophene structure which can explain the variation of chemical composition related to thin film conductivity. XPS results also demonstrated that the percentage of iodine element increases with the conductivity value for plasma polymerized thiophene thin films.
    The conductivity analyzed by both the Hall effect measurements and AC impedance measurements demonstrated that the thiophene prepared by plasma polymerization were insulator. On the other hand, we have shown that, the iodine doping can effectively increase the conductivity of plasma polymerized thin films.
    Although the thiophene thin films prepared by plasma polymerization in this study provide the conductivity in the range of insulator, the conductivity has been promoted comparing with previous literature. Moreover, the prepared thin films showed good adhesion and smooth surfaces which can be used potentially for novel applications. In order to obtain different range of conductivity, experimental parameters and alternative physical-chemical analyses are planned to be explored.

    致謝 I 中文摘要 II Abstract III 總目錄 IV 圖目錄 VI 表目錄 VII 第一章、緒論 1 1-1研究背景 1 1-2研究動機 2 第二章、文獻回顧 3 2-1有機導電性高分子 3 2-1-1發展歷史 3 2-1-2導電性高分子定義 4 2-1-2-1能帶理論 4 2-1-2-2偏極子、雙偏極子和孤立子 5 2-1-2-3摻雜(Doping) 6 2-1-3文獻整理 7 2-2單體分子簡介 9 2-3導電性高分子的製備 10 2-3-1選擇電漿方法的原因 10 2-4電漿簡介 10 2-4-1電漿定義 10 2-4-2電漿源種類 11 2-4-2-1直流電漿 12 2-4-2-2電容式偶合射頻電漿 12 2-4-3薄膜沈積 13 2-4-4電漿聚合 13 2-5導電性高分子的應用 14 第三章、研究方法與儀器原理 15 3-1研究目的 15 3-2實驗藥品與儀器 16 3-3實驗流程 16 3-3-1初步測試 16 3-3-2實驗設備 17 3-3-3流量校正 19 3-3-4電漿聚合薄膜 20 3-3-4-1基材準備 20 3-3-4-2電漿聚合 20 3-3-4-3腔體清潔 21 3-3-5薄膜摻雜 21 3-3-6物理性質分析 21 3-3-7化學性質分析 22 3-3-8電學性質分析 22 3-4儀器原理 22 3-4-1原子力顯微鏡 22 3-4-2 X射線光電子能譜儀 22 3-4-3掃描式電子顯微鏡 24 3-4-4石英晶體微量天秤 24 3-4-5交流阻抗儀 24 3-4-6四點探針(Four-Point probe)導電度儀 28 3-4-7電流伏特光度測量儀 29 3-4-8霍爾效應量測系統 29 第四章、結果與討論 30 4-1利用電漿聚合製備賽吩薄膜 30 4-2電漿聚合參數對賽吩薄膜性質之影響 30 4-2-1電漿聚合時間與賽吩薄膜性質之關係 30 (i) 薄膜厚度與電漿聚合時間的關聯分析: α-stepper 31 (ii) 沈積速率與聚合時間的關聯分析: QCM 31 (iii) 表面型態分析: AFM 32 4-2-2電漿聚合功率對賽吩薄膜性質之影響 34 (i) 薄膜厚度與電漿功率的關聯分析: α-stepper 34 (ii) 沈積速率與聚合時間的關聯分析: QCM 35 (iii) 表面型態分析: AFM 35 (iv) X射線電子能譜儀分析: XPS 37 4-3電漿聚合賽吩薄膜的導電性質分析 42 4-3-1未摻雜前賽吩薄膜的導電性質 42 4-3-2 摻雜參數對於賽吩薄膜導電性質的影響: AC impedance 42 4-3-2-1摻雜溫度對於賽吩薄膜導電性質的影響 43 4-3-2-2摻雜時間對於賽吩薄膜導電性質的影響 43 4-3-3 電漿參數對於賽吩薄膜導電性質的影響: Hall effect system 44 4-3-3-1電漿聚合時間對於賽吩薄膜導電性質的影響 44 4-3-3-2電漿聚合功率對於賽吩薄膜導電性質的影響 45 4-4電漿聚合賽吩薄膜物化性質與導電性質之關聯 47 4-4-1電漿聚合薄膜和導電性的關係 47 4-4-2摻雜參數和導電性的關係 48 第五章、結論與建議 49 5-1結論 49 5-2建議 50 第六章、未來目標 51 參考文獻 52

    1. Wallace GG, Spinks GM, Teasdale PR. Conductive Electroactive Polymers: Intelligent Materials Systems. U.S.A.: Technomic, 1997.
    2. Stevens. MP. Polymer Chemistry. 3rd ed. New York: Oxford Univesity Press, Inc., 1999.
    3. Allcock HR, Lampe FW, Mark JE. Contemporary Polymer Chemistry. 3rd ed. New Jersey: Pearson Education, Inc., 2003.
    4. Cowie JMG, Arrighi V. Polymers: Chemistry and Physics of Modern Materials., 2007.
    5. Wang JG, Neoh KG, Kang ET. Comparative Study of Chemically Synthesized and Plasma Polymerized Pyrrole and Thiophene Thin Films. Thin Solid Films 2004 Jan;446(2):205-217.
    6. Groenewoud LMH. Transparent and Conductive Polymer Laters by Gas Plasma Techniques. Netherlands: University of Twente; 2000.
    7. Pratt C. Conducting Polymers. 1996 [cited; Available from: http://homepage.ntlworld.com/colin.pratt/cpoly.pdf
    8. 陳壽安. 導電高分子:新世代光電材料. 物理雙月刊. 2001.
    9. Chen T-A, Wu X, Rieke RD. Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties. J Am Chem Soc 1995;117(1):233-244.
    10. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, et al. Electrical Conductivity in Doped Polyacetylene. Physical Review Letters 1977;39(17):1098.
    11. Silverstein MS, Visoly-Fisher I. Plasma Polymerized Thiophene: Molecular Structure and Electrical Properties. Polymer 2002 Jan;43(1):11-20.
    12. Groenewoud LMH, Engbers GHM, Terlingen JGA, Wormeester H, Feijen J. Pulsed Plasma Polymerization of Thiophene. Langmuir 2000 Jul;16(15):6278-6286.
    13. Jessica G. Plastic Electric: Lining up the Future of Conducting Polymers. Science News 2003;164:133.
    14. Houlding VH, Nahata A, Yardley JT, Ronald LE. Optical Third Harmonic Response of Amorphous Poly(3-methyl-4'-octyl-2, 2'-bithiophene-5, 5'-diyl) Thin Films. Chemistry of Materials 1990;2:169-172.
    15. Hernandez R, Diaz AF, Bargon J. Surface Characteristics of Thin Films Prepared by Plasma and Electrochemical Polymerizations. J Phys Chem 1984 July;88:3333-3337.
    16. Salaneck WR. Conjugated polymer surfaces and interfaces. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 1997;355:789-799.
    17. Bhat NV, Wavhal DS. Preparation and Characterization of Plasma-polymerized Thiophene Films. Journal of Applied Polymer Science 1998;70(1):203-209.
    18. Martin L, Esteve J, Borros S. Growth vs. Nucleation of Conducting Polymers Thin Films Obtained by Plasma-Enhanced Chemical Vapor Deposition. Thin Solid Films 2004 Mar;451-52:74-80.
    19. Groenewoud LMH, Engbers GHM, White R, Feijen J. On the Iodine Doping Process of Plasma Polymerised Thiophene Layers. Synth Met 2002 Dec;125(3):429-440.
    20. Hyodo K. Electrochromism of Conducting Polymers. Electrochimica Acta 1994;39(2):265-272.
    21. 謝崇偉. 雙二賽吩環戊烷衍生物的合成與性質探討: 國立中央大學; 2005.
    22. Kim TY, Kim JE, Suh KS. On the Molecular Structure and Electrical Properties of Plasma Polymerized Thiophene Films. 7th International Conference on Properties and Applications of Dielectric Materials. Nagoya, 2003. p. 722-725.
    23. Sadhir RK, K. F. Schoch J. Preparation and Properties of Plasma-polymerized Thiophene (PPT) Conducting Films. Thin Solid Films 1993;223:154-160.
    24. Yamamoto T, Osakada K, Wakabayashi T, Yamamoto A. Nickel and Palladium Catalyzed Dehalogenating Polycondensation of Dihaloaromatic Compounds with Zinc. A New Route to Poly(2, 5-hienylene) and Poly(l, 4-phenylene). Makromol Chem, Rapid Commun 1985;6:671-674.
    25. Sanechika K, Yamamoto T, Yamamoto A. Preparation of Copolymers Composed of 2, 5-thienylene and 2, 4-Thienylene Units. Effect of Copolymer Composition on Electronic Spectrum, Electric Conductivity, and Chemical Properties Journal of Photopolymer Science: Polymer Letters Edition 1982;20:365-371.
    26. Yamamoto T, Sanechika K, Yamamoto A. Preparation of Thermostable and Electric-Conducting Poly(2,5-Thienylene) Journal of polymer Science: Polymer Letters Edition 1980;18:9-12.
    27. 張慶全. 利用連續式與脈衝式射頻電漿聚合含胺基之高分子薄膜及材料性質分析. 台北: 國立台灣科技大學; 2008.
    28. 周賢鎧. Plasma & Materials. 台北; 2007.
    29. Yasuda H. Plasma Polymerization. New York: Technomic Publishing Company, Inc., 1985.
    30. Yasuda H, Wang CR. Plasma Polymerization Investigated by the Substrate Temperature Dependence. Journal of Polymer Science: Polymer Chemistry Edition 1985;23(1):87-106.
    31. Cobine. JD. Gaseous Conductors: Theory and Engineering Applications Dover, 1958.
    32. Venugopalan M. Basic Processes in Glow Discharge Plasmas. Nuclear Instruments and Methods in Physics Research B 1987;23:405-417.
    33. Bogaerts A, Gijbels R. Calculation of Crater Profiles on a Fiat Cathode in a Direct Current Glow Discharge Spectrochimica Acta Part B 1997;52:765-777.
    34. Bogaerts A, Gijbels R. Hybrid Monte Carlo—fluid Modeling Network for An Argon/Hydrogen Direct Current Glow Discharge. Spectrochimica Acta Part B 2002;57:1071-1099.
    35. Lee JK, Eun KY, Baik YJ, Cheon HJ, Rhyu JW, Shin TJ, et al. The Large Area Deposition of Diamond by the Multi-cathode Direct Current Plasma Assisted Chemical Vapor Deposition (DC PACVD) Method. 2002:463-466.
    36. Tsaneva VN, Popov TK, Dias FM, Tarte EJ, Blamire MG, Evetts JE, et al. Optical Emission Spectroscopy and Langmuir Probe Characterisation of the Plasma During High-pressure Sputter Deposition of High-Tc Superconducting YBa2Cu3O7-x Thin Films. Vacuum 2002;69(1-3):261-266.
    37. Sato D, Suwa T, Kakimoto M-a, Imai Y. Observation of Surface Morphology of Plasma Polymerized Film by Atomic Force Microscope (AFM). Journal of Photopolymer Science and Technology 1997;10:149-150.
    38. Vickerman JC. Electron Spectroscopy for Chemical Analysis. Surface Analysis. United Kingdom: John Wiley & Sons, 1997.
    39. Nakanishi K, Muguruma H, Karube I. A Novel Method of Immobilizing Antibodies on a Quartz Crystal Microbalance Using Plasma-Polymerized Films for Immunosensors. Analytical Chemistry 1996;68(10):1695-1700.
    40. 蔡麗娟. 交聯型固態高分子電解質: 國立中央大學 2001.
    41. Radhakrishnan S, Joshi SG. Stabilization of High Conductivity in Iodine Doped Polyphenylene Sulfide. Journal of Polymer Science: Part C: Polymer Letters 1989;27:127-131.
    42. Yamamoto T, Yokohama, Yamamoto A, Sanechika K, inventors; Tokyo Institute of Technology, Tokyo, Japan, assignee. Linear Poly(3-Alkyl-2, 5-Thienylene) Polymer Patent No. 4,521,589, 1984.

    無法下載圖示 全文公開日期 2014/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE