簡易檢索 / 詳目顯示

研究生: 張慶全
Ching-chuan Chang
論文名稱: 利用連續式與脈衝式射頻電漿聚合含胺基之高分子薄膜及材料性質分析
Characterization of amine-containing thin films prepared by continuous and pulsed plasma polymerization
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 劉懷勝
none
蔡偉博
none
魏大欽
none
李振綱
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 130
中文關鍵詞: 連續式電漿脈衝式電漿能率循環電漿聚合生物相容性
外文關鍵詞: continuous plasma, pulsed plasma, duty cycle, plasma polymerization, cell biocompatibility
相關次數: 點閱:322下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究目的為利用含胺基之單體(丙胺、丙烯胺、丙炔胺),以連續式與脈衝式電漿製備含胺基高分子薄膜。在連續式電漿聚合方面,探討沉積時間、電漿功率對丙胺、丙烯胺、丙炔胺沉積之薄膜性質影響;在脈衝式電漿聚合方面,探討能率循環(duty cycle)對丙胺、丙烯胺、丙炔胺沉積之薄膜性質影響;並就連續式與脈衝式電漿製備之高分子薄膜,探討生物相容性與電漿參數之關係。
      由連續式電漿所聚合之高分子薄膜分析結果發現,對飽和以及不飽和之單體,其沉積速率與時間關係為一常數,且正比於電漿功率,在低功率下丙烯胺、丙炔胺具有較高的沉積效能(ng/J),由傅立葉紅外線光譜儀和X射線光電子能譜儀分析結果顯示,丙胺、丙烯胺、丙炔胺薄膜,確實含胺之官能基。同時,利用滴定方法測量胺基數目之結果,發現低電漿功率下具有較高的胺基含量。由脈衝式電漿高聚合之分子薄膜分析結果發現,單體沉積速率與能率循環成正比。經由控制能率循環,由傅立葉紅外線光譜儀和X射線光電子能譜儀分析結果顯示,在低能率循環條件下可獲得富含胺基之丙胺、丙烯胺、丙炔胺薄膜。
    對於連續式和脈衝式電漿所製備之含胺基高分子薄膜,利用生物相容性測試結果為:由細胞型態觀察方面,於含胺基之電漿高分子薄膜表面,細胞能夠順利延展並呈現纖維狀形態,推論丙胺、丙烯胺、丙炔胺電漿高分子薄膜都可增進細胞附著、延展以及增生。在細胞活性分析方面,無論是利用連續式或是脈衝式電漿所製備之丙胺、丙烯胺、丙炔胺薄膜,使用纖維母細胞培養之結果,其活性都大於存在於矽基材上之活性。本研究利用連續式與脈衝式電漿,能夠在不同電漿參數下,製備之含胺基之高分子薄膜,並且對於細胞之延展以及活性有提升之作用。


    The goal of this research work is to prepare amine-containing polymer thin films by both continuous and pulsed plasma polymerization methods. Three monomers containing various unsaturated structures (propylamine, allylamine, propargylamine) are chosen to provide amine functionalities. The effects of operational parameters such as deposition time, applied power and duty cycle on the physical-chemical properties of polymerized thin films were evaluated by studying their chemical compositions, deposition rates, surface morphology and functionalities.
    For both continuous and pulsed plasma polymerizations, the deposition rates were found to be independent of deposition time and proportional to the applied power for three monomers. The surface morphology obtained by AFM showed island structures with nearly constant roughness. This indicates that the surfaces of the thin films prepared by plasma are very uniform. For lower applied power, there exist higher deposition rates for allylamine and propargylamine monomers due to the unsaturated structures. The FTIR and XPS results demonstrated that the amine functional groups have been successfully incorporated onto the thin films for three monomers. The amine derivatization experiments were used to quantify the amine functionalities. The results showed that higher amine concentration can be created at the condition of lower power for both continuous and pulsed plasma polymerization processes. For pulsed plasma polymerization processes, the deposition rate is proportional to the duty cycle.
    In order to examine the biocompatibility of amine-containing thin films prepared by plasma polymerizations, the cell behaviors of fibroblasts on these films were monitored. The cell morphology observed by SEM showed that the amine-containing thin films can effectively assist cell spreading. The cell viability was quantified by MTT tests and the results showed that thin films prepared by all these three monomers
    can enhance cell viability up to 2.3 folds comparing with the control sample.

    中文摘要I 英文摘要II 誌謝III 總目錄IV 表目錄VI 圖目錄VIII 第一章緒論1 1.1 研究背景1 1.2 研究目標3 第二章 文獻回顧5 2.1 電漿簡介5 2.1.1 電漿定義5 2.1.2 電漿源種類5 2.1.3 直流電漿5 2.1.4 電容式偶和射頻電漿6 2.1.5 脈衝式電漿6 2.2 薄膜沉積7 2.3 電漿聚合8 2.3.1 電漿聚合理論9 2.3.2 電漿聚合參數12 2.4 電漿聚合含胺基薄膜於生醫領域的應用14 第三章 研究方法與儀器原理16 3.1 研究目的16 3.2 實驗步驟17 3.2.1 實驗設備17 3.2.2 單體流量校正19 3.2.3 電漿聚合薄膜21 3.2.4 物理性質分析23 3.2.5 化學性質分析24 3.3 儀器原理25 3.3.1 石英晶體微量天秤25 3.3.2 掃描式電子顯微鏡25 3.3.3 原子力顯微鏡26 3.3.4 X-射線光電子能譜儀27 3.3.5 傅立葉紅外線光譜儀28 3.3.6 紫外線-可見光分光光譜儀28 3.3.7 接觸角測量儀29 3.4 細胞培養29 3.5 實驗藥品與儀器30 第四章 結果與討論32 4.1 電漿高分子薄膜特性之研究32 4.1.1 沉積時間對電漿高分子薄膜特性之影響32 4.1.2 電漿功率對電漿高分子薄膜特性之影響53 4.2 利用脈衝式電漿沉積含胺基高分子薄膜77 4.2.1 脈衝式能率循環與沉積速率之關聯分析77 4.3 含胺基之電漿高分子薄膜對生物相容性之影響97 4.3.1 電漿高分子薄膜對生物型態之影響98 4.3.2 能率循環對生物型態之影響100 4.3.3 電漿高分子薄膜對生物活性之影響104 4.3.4 能率循環對生物活性之影響105 第五章 結論與建議109 第六章 參考文獻112

    1.H. Yasuda, Plasma Polymerization, Academic Press, New York, 1985.
    2.X. Wang, and G. Grundmeier ."Surface analytical studies of Ar-plasma etching of thin heptadecafluoro-1-decene plasma polymer films." Applied Surface Science 252(23): 8331-8336 (2006).
    3.Erika E. Johnston, James D. Bryers, and Buddy D. Ratner. “Plasma deposition and surface dioxane, and crown ether nonfouling films” Langmuir 21, 870-881 (2005).
    4.Shasha Liu, Margarida M. L. M. Vareiro, et. al. “Control of attachment of bovine serum albumin to pulse plasma-polymerized maleic anhydride by variation of pulse conditions” Langmuir 21, 8572-8575 (2005).
    5.Atsunori Hiratsuka, Ken-ichi Kojima, et. al. “Electron transfer mediator micro-biosensor fabrication by organic plasma process” Biosensors and bioelectronics 21, 957-964 (2005).
    6.Atsunori Hiratsuka, Hitoshi Muguruma, et. al. “A glucose sensor with a plasma-polymerized thin film fabricated by dry processes” electroanalysis 11(15) 1098-1100 (1999).
    7.Z. Zhang, Q. Chen, W. Knoll, R. Forch, “Effect of aqueous solution on functional plasma polymerized films” Surface and coatings technology 174-175, 588-590 (2003).
    8.M. T. van Os, B. Menges, et. al. “Characterization of plasma-polymerized allylamine using waveguide mode spectroscopy” Chem. Mater. 11, 3252-5257 (1999).
    9.S.A. Voronin, M.R. Alexander, J.W. Bradley.“Time-resolved mass and energy spectral investigation of a pulsed polymerizing plasma struck in acrylic acid”Surface & Coatings Technology 201, 768-775 (2006).
    10.Andrei Coukourov, Hynek Biederman, et al. “Mechanistic studies of plasma polymerization of allyamine” J. Phys. Chem. B 109, 23086-23095 (2005).
    11.Michael Lejeune, Frederic Bretagnol, et al. “Microstructural evolution of allylamine polymerized plasma films” Surface&coatings technology 200:5902-5907 (2006).
    12.N. Dilsiz and G. Akovali. “Plasma polymerization of selected organic compounds” Polymer 37(2), 333-342 (1996)
    13.Z. Zhang, W. Knoll, and R. Foerch. “ DNA hybridization on plasma-polymerized allyamine” Macromolecules 38, 1271-1276 (2005).
    14.Sigeru Kurosawa, Tomoya hirokawa, et al. “Detection of deposition rate of plasma-polymerized films by quartz crystal microbalance” Thin solid films 374, 262-267 (2000).
    15.H. Yasuda and C. R. Wang, J. Polym. Sci., Polym. Chem. Ed., 16:743 (1973)
    16.A. Bogaerts, R. Gijbels, “Hybrid Monte Carlo—fluid modeling network for an argon/hydrogen direct current glow discharge” Spectrochimica acta part B, 57, 1071 (2002)
    17.J. K. Lee, K. Y. Eun, et. al. “The large area deposition of diamond by the multi-cathode direct current plasma assisted chemical vapor deposition (DC PACVD) method” Diam. Relat. Mater., 11, 463 (2002)
    18.A. Bogaerts, R. Gijbels, “Calculation of crater profiles on a flat cathode in a direct current glow discharge” Spectrochimica Acta Part B, 52, 765 (1997)
    19.M. Venugopalan, Nucl. Instrum. Meth. B, 23, 405 (1987)
    20.A. Salabas, G. Gousset, L.L. Alves, “Charged particle transport modelling in silane–hydrogen radio-frequency capacitively coupled discharges” Vacuum, 69, 213 (2002)
    21.T. Makabe, Z. L. Petrovi, “Development of optical computerized tomography in capacitively coupled plasmas and inductively coupled plasmas for plasma etching” Appl. Sur. Sci., 192, 88 (2002)
    22.V. N. Tsaneva, Tsv. K. Popov, et. al. “Optical emission spectroscopy and Langmuir probe characterisation of the plasma during high-pressure sputter deposition of high-Tc superconducting YBa2Cu3O7−x thin films” Vacuum, 69, 261 (2002)
    23.G. Bruno, P. Capezutto, A. Madan, Plasma Deposition of Amorphous Silicon-Based Materials, Academic Press, San Diego, 1995.
    24.E. A. G. Hamers, W. G. van sark, et. al. “Structural properties of a-Si:H related to ion energy distributions in VHF silane deposition plasmas” J. Non-cryst. Solids, 226, 205 (1998)
    25.E. Hamers, Plasma Deposition of Hydrogenated Amorphous Silicon, Ph. D. Thesis, University of Utrecht, 1998.
    26.R. Willhelm, Deposition properties and applications of carbon-based coatings, in : H. Schluter, A. Shivarova (Eds.), Advanced Technologies Based on Wave and Beam Generated Plasmas, NATO Sci. Series, 67, Kluwer, Dordrecht, 123 (1999)
    27.J. C. Angus, P. Koidl, S. Domitz, Carbon thin films, in: J. Mort, F. Jansen (Dds.), Plasma Deposited Thin Films, CRC Press, Boca Raton, FL, 89, (1986)
    28.J. Yang, A. Banerjee, S. Uha, “Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies” Appl. Phys. Lett., 70, 2975 (1997)
    29.J. C. Vickerman, “Electron Spectroscopy for Chemical Analysis”, Surface Analysis, Ch. 3, John Wiley & Sons, 1997
    30.I. Gancarz, J. Bryjak, G. Pozniak, W. Tylus, “Plasma modified polymers as a support for enzyme immobilization II. Amines plasma” Eur. Poly. J. 39, 2217 (2003)
    31.B. S. Prakash, Vijay Paul, N. Anandlaxmi, “Development and validation of a simple, sensitive, second antibody format enzyme immunoassay for LH determination in plasma” J. Immun. Meth., 270, 281 (2002)
    32.Z. Ding, J. Chen, et. al. “Immobilization of chitosan onto poly- -lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells” Biomaterials, 25, 1059 (2004)
    33.Z. Zhang, W. Knoll, and R. Foerch, “Plasma Polymer Film Structure and DNA Probe Immobilization” Macromolecules, 38, 1271-1276 (2005)
    34.H. K. Muguruma, I. Karube, “Plasma-polymerized films for biosensors” Trac-Trends Anal. Chem., 18, 62 (1999)
    35.A. Steinschaden, D. Adamovic, et. al., “Miniaturised thin film conductometric biosensors with high dynamic range and high sensitivity” Sens. Actuators B, 44, 365 (1997)
    36.Bryjak, M.; Gancarz, I.; Pozniak, G. “Surface evaluation of plasma-modified polysulfone (Udel P-1700) films” Langmuir, 42, 188 (1999)
    37.Burns, N. L. “Surface Characterization through Measurement of Electroosmosis at Flat Plates” Journal of Colloid and Interface Science, 183, 249 (1996)
    38.Puleo, D. A.; Kissling, R. A.; Sheu, M. S. “A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4) on titanium alloy” Biomaterials 23, 2079 (2002)
    39.P. Hamerli, Th. Weigel, Th. Groth, D. Paul ”Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes” Biomaterials, 24, 3989-3999 (2003)
    40.Calderon, J. G.; Harsch, A.; Gross, G. W.; Timmons, R. B. ”Stability of plasma-polymerized allylamine films with sterilization by autoclaving” Journal of biomedical materials research part A, 42, 597 (1998)
    41.Hiratsuka, A.; Muguruma, H.; Nakamura, R.; Sato, K.; Uchiyama, S.; Karube, I. ”Mass transport behavior of electrochemical species through plasma-polymerizaed thin film on platinum electrode” Journal of membrane science, 175, 25 (2000)
    42.Oye, G.; Roucoules, V.; Cameron, A. M.; Oates, L. J.; Cameron, N. R.; Steel, P. G.; Badyal, J. P. S.; Davis, B. G.; Coe, D.; Cox, R. ”Plasmachemical amine functionalization of porus polystyrene beads:The importance of pore architecture” Langmuir, 18, 8996 (2002)
    43.Choukourov, A.; Biederman, H.; Kholodkov, I.; Slavinska, D.; Trchova, M.; Hollander, A. ”Properties of amine-containing coatings prepared by plasma polymerization” Journal of applied polymer science, 92, 979 (2004)
    44.S.A. Voronin, M.R. Alexander, J.W. Bradley.“Time-resolved mass and energy spectral investigation of a pulsed polymerizing plasma struck in acrylic acid”Surface & Coatings Technology 201, 768-775 (2006).
    45.Thomas R. Gengenbach, Hans J. Griesser.”Aging of 1,3-Diaminopropane plasma-depostied polymer films : Mechanisms and reaction pathways” Journal of Polymer Science: Part A: Polymer Chemistry, 37, 2191-2206 (1999).
    46.D’Agostino, R.; Cramarossa, F.; Fracassi, F.; Illuzzi, F. In Plasma deposition, Treatment and Etching of Polymers; d’Agostino, R., Flamm, D., Auciello, O., Eds.; Academic Press: New York, 1990; P 544.
    47.Thomas R. Gengenbach, Hans J. Griesser.”Deposition conditions influence the postdeposition oxidation of methyl methacrylate plasma polymer films”Journal of Polymer Science: Part A: Polymer Chemistry, 36, 985-1000 (1998).
    48.Shard, A. G.; Whittle. J, D.;Beck, A. J.; Brooks P. N.; Bullet, N. A.; Talib, R. A.; Mistry, A.; Barton,; McArthur, S. L.”A NEXAFS examination of unsaturation in plasma polymers of allylamine and propylamine” J.Phys. Chem. B, 108, 12472-12480 (2004).
    49.H. Yasuda, J. Polym. Sci., Macromol. Rev., 16:199 (1981).
    50.Gerenser, L. J. ”X-Ray Photoemission Study of Plasma Modified Polyethylene Surfaces” J Adhes Sci Technol, 1,303 (1987)

    無法下載圖示 全文公開日期 2013/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE