簡易檢索 / 詳目顯示

研究生: 陳彥辰
Yen-Chen Yen
論文名稱: CuZrTiFeCrx高熵合金之顯微結構、硬度與腐蝕之研究
Study on microstructure, hardness and corrosion of CuZrTiFeCrx high entropy alloy
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 蔡哲瑋
蕭憲明
陳志銘
周賢鎧
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 75
中文關鍵詞: 高熵合金電化學硬度動態極化曲線
外文關鍵詞: High entropy alloy, Electrochemical, Hardness, potentiodynamic polarization
相關次數: 點閱:218下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究根據CuZrTi三元相圖在等莫耳情況下的相為Cu2TiZr,並添加Fe、Cr於合金系統中,合金設計為CuZrTiFeCrx(x=0,0.1,0.3,0.5,0.8及1.0,x為莫耳比)共六種組成的合金,觀察Cr元素含量的變化對合金之微結構、硬度、電化學腐蝕性質的影響。
    本實驗以電弧熔煉爐來製備銅-鋯-鈦-鐵-鉻五元合金。以場發掃描式電子顯微鏡(FE-SEM)探討顯微結構;由能量分散能譜儀(EDS)及X射線繞射儀(XRD)判定顯微結構的組成相。結果發現所有合金鑄材均為樹枝狀結構,在Cr-0與Cr-0.1合金系統中,樹枝晶狀與樹枝間晶狀均為Cu2TiZr相,在interdendrite上會產生兩種介金屬化合物的結構Cu8Zr3與FeZr2。隨著Cr含量的上升,到達Cr-0.3至Cr-1.0時,dendrite相從Cu2TiZr變為Zr(FeCr)2,在結構上同屬C14 Laves相,而interdendrite相仍維持Cu2TiZr相,介金屬相仍為Cu8Zr3與FeZr2。
    本研究探討經1小時1050°C在不同Cr含量的CuZrTiFeCrx高熵合金,於3.5wt%NaCl水溶液下,結果顯示,CuZrTiFeCrx高熵合金系統以CuZrTiFeCr1.0有最低腐蝕速率3.45×10-7(A/cm2)及較高的腐蝕電位(-0.326V),亦即具有較好的抗蝕性。CuZrTiFeCrx高熵合金系統的硬度量測以CuZrTiFeCr1.0的硬度最高,主要是介金屬相(Fe2TiZr)的析出顆粒所造成的影響。

    關鍵詞:高熵合金、電化學、硬度、動態極化曲線


    The CuZrTi ternary phase diagram is based on Cu2TiZr in the isomeric phase, and Fe and Cr are added to the alloy system. The alloy design is CuZrTiFeCrx (x=0, 0.1, 0.3, 0.5, 0.8 and 1.0, x is Molar ratio). A total of six kinds of alloys were observed to the effect of Cr content on the microstructure, hardness, and electrochemical corrosion properties of the alloy.
    In this experiment, we used the arc melting to prepare a Cu-Zr-Ti-Fe-Cr alloys. The microstructure was investigated with a field emission scanning electron microscope (FE-SEM); the compositional phases of the microstructure were determined by energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). It was found that all the alloy castings were dendritic structure. In the Cr-0 and Cr-0.1 alloy systems, the dendritic and interdendritic were both Cu2TiZr phases. Above the interdendrite, two intermetallic compounds were Cu8Zr3 and FeZr2. With the increase of Cr content, when the Cr-0.3 to Cr-1.0 is reached, the dendrite phase changes from Cu2TiZr to Zr(FeCr)2, structurally belongs to the C14 Laves phase, and the interdendrite phase still maintains the Cu2TiZr phase. The intermetallic phase also remains Cu8Zr3 and FeZr2.
    The corrosion behavior of CuZrTiFeCrx high entropy alloys under heat treatment at 1050°C with 1 hour holding time. The corrosion resistance of the CuZrTiFeCrx specimens has been evaluated by potentiodynamic polarization. The specimen CuZrTiFe exhibits serious corrosion in 3.5wt% NaCl solution and has highest corrosion rate. Due to the Cu2TiZr is the active sensitivity zone of potential difference, the high entropy alloy was preferentially attacked along the Cu-compound phase.
    The highest hardness of CuZrTiFeCrx high entropy alloys system is CuZrTiFeCr1.0, which is mainly caused by the precipitation particles of the intermetallic phase (Fe2TiZr).

    Keywords: High entropy alloy, Electrochemical, Hardness, potentiodynamic polarization

    摘要 I Abstract II 第一章 前言 1 第二章 文獻回顧 2 2.1高熵合金發展 2 2.1.1高熵合金的發展及核心效應 2 2.1.2高熵合金的特性與應用 5 2.1.3高熵合金之機械行為 7 2.1.4變形及熱處理工藝對高熵合金組織結構的影響 8 2.1.5高熵合金之研究 11 2.2熵對合金系統的影響 13 2.3 高熵合金性質 17 2.4材料腐蝕 18 2.4.1腐蝕型態 18 2.4.2電化學測試 18 2.4.3電化學極化 20 2.4.4混合電位 21 2.4.5腐蝕速率 21 2.4.6鈍化 21 2.5研究目的 23 第三章 實驗方法 24 3.1 合金組成 24 3.2 合金製備 24 3.3 時效處裡 24 3.4 硬度分析 25 3.5 X-ray繞射分析 25 3.6 掃描式電子顯微鏡分析 25 3.7 電化學極化試驗 25 第四章 實驗結果與討論 29 4.1 CuZrTiFeCrx合金鑄材顯微組織及成分分析 29 4.1.1 CuZrTiFeCrx 合金鑄材分析 29 4.1.2 CuZrTiFe合金鑄材 32 4.1.3 CuZrTiFeCr0.1合金鑄材 34 4.1.4 CuZrTiFeCr0.3合金鑄材 36 4.1.5 CuZrTiFeCr0.5 合金鑄材 39 4.1.6 CuZrTiFeCr0.8 合金鑄材 41 4.1.7 CuZrTiFeCr1.0 合金鑄材 43 4.1.8 CuZrTiFeCrx 顯微結構分析與討論 45 4.2 CuZrTiFeCrx 微硬度分析 46 4.3 電化學分析 48 4.3.1 3.5wt%NaCl水溶液環境的影響 48 4.3.2 CuZrTiFeCrx系統於3.5wt%NaCl極化後腐蝕圖 51 4.3.3 CuZrTiFeCrx腐蝕後的顯微結構 53 第五章 結論 59 文獻參考 60

    1. A. Ges, O. Fornaro and H. Palacio, Coarsening behaviour of a Ni-base superalloy under different heat treatment conditions. Materials Science and Engineering: A, 458(1-2) (2007) 96-100.
    2. L.J. Carroll, Q. Feng, J.F. Mansfield, T.M. Pollock, Elemental partitioning in Ru-containing nickel-base single crystal superalloys. Materials Science and Engineering: A, 457(1-2) (2007) 292-299.
    3. C. Roberts, S. Semiatin and A. Rollett, Particle-associated misorientation distribution in a nickel-base superalloy. Scripta materialia, 56(10) (2007) 899-902.
    4. L. WangG. Xie, J. Zhang,L.H. Lou, On the role of carbides during the recrystallization of a directionally solidified nickel-base superalloy. Scripta materialia, 55(5) (2006) 457-460.
    5. J. Safari and S. Nategh, On the heat treatment of Rene-80 nickel-base superalloy. Journal of materials processing technology, 176(1-3) (2006) 240-250.
    6. D.U. Furrer, and H.J. Fecht, γ′ formation in superalloy U720LI. Scripta Materialia, 40(11): (1999) 1215-1220.
    7. O. Ojo, and M. Chaturvedi, On the role of liquated γ′ precipitates in weld heat affected zone microfissuring of a nickel-based superalloy. Materials Science and Engineering: A, 403(1-2) (2005) 77-86.
    8. A. Suzuki, G.C. DeNolf and T.M. Pollock, Flow stress anomalies in γ/γ′ two-phase Co–Al–W-base alloys. Scripta Materialia, 56(5) (2007) 385-388.
    9. V. Kuzucu, M. Ceylan, H. Celik and I. Aksoy, Phase investigation of a cobalt base alloy containing Cr, Ni, W and C. Journal of Materials Processing Technology, 74(1-3) (1998) 137-141.
    10. L. Fouilland, M.E. Mansori and M. Gerland, Role of welding process energy on the microstructural variations in a cobalt base superalloy hardfacing. Surface and Coatings Technology, 201(14) (2007) 6445-6451.
    11. M. Maldini, G. Angella and V. Lupinc, Analysis of creep curves of a nickel base superalloy in a wide stress/temperature range. Materials Science and Engineering: A, 462(1-2) (2007) 436-440.
    12. D.K. Chaudhuri, D. Xie and A.N. Lakshmanan, The influence of stacking fault energy on the wear resistance of nickel base alloys. Wear, 209(1-2) (1997) 140-152.
    13. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering 14. , 6(5) (2004) 299-303.
    14. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta materialia, 48(1) ( 2000) 279-306.
    15. J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A, 35(8) (2004) 2533-2536.
    16. W.R. Wang, W.L. Wang, S.C. Wang, Y.C Tsai, C.H. Lai and J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 26 (2012) 44-51.
    17. K.Y. Tsai, M.H. Tsai and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 61(13) (2013) 4887-4897.
    18. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61 (2014) 1-93.
    19. D. Miracle and O. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 122 (2017) 448-511.
    20. J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen and S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials chemistry and physics, 103(1) (2007) 41-46.
    21. C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H, Tsau and S.Y. Chang, Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 36(4) (2005) 881-893.
    22. B. Gludovatz, A. Hohenwarter, D, catoor, E.H. Chang, E.P. George and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345(6201) (2014) 1153-1158.
    23. F. Otto, A. Dlouhy, Ch. Somsen, H. Bei, G. Eggeler and E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 61(15) (2013) 5743-5755.
    24. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature, 534(7606) (2016) 227.
    25. S.Y. Lin, S.Y. Chang, Y.C. Huang, F.S. Shieu and J.W. Yeh, Mechanical performance and nanoindenting deformation of (AlCrTaTiZr) NCy multi-component coatings co-sputtered with bias. Surface and Coatings Technology, 206(24) (2012) 5096-5102.
    26. S.Y. Lin, S.Y. Chang, C.J. Chang and Y.C. Huang, Nanomechanical properties and deformation behaviors of multi-component (AlCrTaTiZr) NxSiy high-entropy coatings. Entropy. 16(1) (2013) 405-417.
    27. C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun and S.K. Chen, Deformation and annealing behaviors of high-entropy alloy Al0. 5CoCrCuFeNi. Journal of Alloys and compounds, 486(1-2) (2009) 427-435.
    28. T.T. Shun and Y.C. Du, Age hardening of the Al0. 3CoCrFeNiC0. 1 high entropy alloy. Journal of alloys and compounds, 478(1-2) (2009) 269-272.
    29. C.M. Lin, H.L. Tsai and H.Y. Bor, Effect of aging treatment on microstructure and properties of high-entropy Cu0. 5CoCrFeNi alloy. Intermetallics, 18(6) (2010) 1244-1250.
    30. A.J. Zaddach, C. Niu, C.C. Koch and D.L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. Jom, 65(12) (2013) 1780-1789.
    31. A. Zaddach, R. Scattergood and C. Koch, Tensile properties of low-stacking fault energy high-entropy alloys. Materials Science and Engineering: A, 636 (2015) 373-378.
    32. T.T. Shun, L.Y. Chang and M.H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Materials Characterization, 70 (2012) 63-67.
    33. T.T. Shun, L.Y. Chang and M.H. Shiu, Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Materials Science and Engineering: A, 556 (2012) 170-174.
    34. F. He, Z. Wang, P. Cheng, Q. Wang, J. Li, Y. Dang, J. Wang and C.T. Liu, Designing eutectic high entropy alloys of CoCrFeNiNbx. Journal of Alloys and Compounds, 656 (2016) 284-289.
    35. F. He, Z. Wang, S. Niu, Q. Wu, J. Li, J. Wang, C.T. Liu and Y. Dang, Strengthening the CoCrFeNiNb0. 25 high entropy alloy by FCC precipitate. Journal of Alloys and Compounds, 667 (2016) 53-57.
    36. F. He, Z. Wang, X. Shang, C. Leng, J. Li and J. Wang, Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Materials & Design, 104 (2016) 259-264.
    37. C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang and H.C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials letters, 61(1) (2007) 1-5.
    38. Y.P. Wang, B.S. Li, M.X. Ren, C.Yang and H.Z. Fu, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A, 491(1-2) (2008) 154-158.
    39. Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh, Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Journal of Alloys and Compounds, 488(1) (2009) 57-64.
    40. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen and P.K. Liaw, Solid‐solution phase formation rules for multi‐component alloys. Advanced Engineering Materials, 10(6) (2008) 534-538.
    41. G. Sheng and C.T. Liu, Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 21(6) (2011) 433-446.
    42. X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2-3) (2012) 233-238.
    43. S. Guo, Q. Hu, C. Ng and C.T. Liu, More than entropy in high-entropy alloys: forming solid solutions or amorphous phase. Intermetallics, 41 (2013) 96-103.
    44. M.X. Ren, B.S. Li and H.Z. Fu, Formation condition of solid solution type high-entropy alloy. Transactions of Nonferrous Metals Society of China, 23(4) (2013) 991-995.
    45. W.H. Liu, Y. Wu, J.Y. He, Y. Zhang, C.T. Liu and Z.P. Lu, The phase competition and stability of high-entropy alloys. Jom, 66(10) (2014) 1973-1983.
    46. Z. Wang, S. Guo and C.T. Liu, Phase selection in high-entropy alloys: from nonequilibrium to equilibrium. JOM, 66(10) (2014) 1966-1972.
    47. Z. Wang, Y. Huang, Y. Yang, J. Wang and C.T. Liu, Atomic-size effect and solid solubility of multicomponent alloys. Scripta Materialia, 94 (2015) 28-31.
    48. M.H. Tsai and Yeh J.W., High-entropy alloys: a critical review. Materials Research Letters, 2(3) (2014) 107-123.
    49. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic and J. Tiley, Exploration and development of high entropy alloys for structural applications. Entropy, 16(1) (2014) 494-525.
    50. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An and Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 102 (2016) 187-196.
    51. M.H. Tsai, Three strategies for the design of advanced high-entropy alloys. Entropy, 18(7) (2016) 252.
    52. T.L. Hill, , An introduction to statistical thermodynamics. 1960: Courier Corporation.
    53. Ruffa, A., Thermal potential, mechanical instability, and melting entropy. Physical Review B, 25(9) (1982) 5895.
    54. A. Takeuchi and A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Materials Transactions, JIM, 41(11) (2000) 1372-1378.
    55. A. Takeuchi and A. Inoue, Quantitative evaluation of critical cooling rate for metallic glasses. Materials Science and Engineering: A, 304 (2001) 446-451.
    56. A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 46(12) (2005) 2817-2829.
    57. B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai and M.X. Wang, Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. journal of Alloys and Compounds, 493(1-2) (2010) 148-153.
    58. K. Zhang, and Z. Fu, Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics, 22 (2012) 24-32.
    59. Y. Tomota, T. Suzuki, A. Kanie, Y. Shiota, M. Uno, A. Moriai, N. Minakawa and Y. Morii, In situ neutron diffraction of heavily drawn steel wires with ultra-high strength under tensile loading. Acta materialia, 53(2) (2005) 463-467.
    60. J.K. Choi, D.H. Seo, J.S. Lee, K.K. Um and W.Y. Choo, Formation of ultrafine ferrite by strain-induced dynamic transformation in plain low carbon steel. ISIJ international, 43(5) (2003) 746-754.
    61. B.A. Welk, R.E.A. Williams, G.B. Viswanathan, M.A. Gibson, P.K. Liaw and H.L. Fraser, Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl. Ultramicroscopy,. 134 (2013) 193-199.
    62. C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen and J.W. Yeh, Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High‐Entropy Alloys. Advanced Engineering Materials, 12(1‐2) (2010) 44-49.
    63. M.R. Chen, S.J. Lin, J.W. Yeh, M.H. Chuang, S.K. Chen and Y.S. Huang, Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al 0.5 CoCrCuFeNi high-entropy alloy. Metallurgical and Materials Transactions A, 37(5) (2006) 1363-1369.
    64. M.H. Tsai, A.C. Fan and H.A. Wang, Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNiX high-entropy alloys. Journal of Alloys and Compounds, 695 (2017) 1479-1487.
    65. H. Jiang, K. Han, D. Qiao, Y. Lu, Z, Cao and T. Li, Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Materials Chemistry and Physics, 210 (2017) 43-48.
    66. W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu and C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 60 (2015) 1-8.
    67. G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika and O.N. Senkov, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. Journal of Alloys and Compounds, 591 (2014) 11-21.
    68. J. Kunze, V. Maurice, L.H. Klein, H.H. Strehblow and P. Marcus, In situ STM study of the effect of chlorides on the initial stages of anodic oxidation of Cu (111) in alkaline solutions. Electrochimica Acta, 48(9) 2003 1157-1167.
    69. Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh and T. Duval, Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel. Corrosion Science, 47(11) (2005) 2679-2699.

    QR CODE