簡易檢索 / 詳目顯示

研究生: 郭孟翰
Meng-han Kuo
論文名稱: 鎳基材與介金屬相-Ni3Sn4相在無鉛銲料中溶解現象探討
Dissolution Behavior of Ni and Ni3Sn4 in Liquid Lead-free solders
指導教授: 顏怡文
Yee-wen Yen
口試委員: 吳子嘉
Albert T. Wu
陳志銘
Chih-ming Chen
郭俞麟
Yu-lin Kuo
鄭偉鈞
Wei-chun Cheng
洪伯達
Po-da Hong
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 118
中文關鍵詞: 溶解速率與行為Dybkov's方程式溶解機制無鉛銲料介金屬相-Ni3Sn4界面反應
外文關鍵詞: intermetallic compound-Ni3Sn4
相關次數: 點閱:270下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對構裝製程中使用的鎳基材,探討基材與無鉛銲錫材料間溶解行為。此外並利用自行配製之介金屬相-Ni3Sn4相,研究其與液態銲錫間發生的界面反應及溶解機制。
    在反應溫度240、270、300℃下,鎳基材在不同銲錫的溶解速率快慢依序為Sn>Sn-3.0Ag-0.5Cu>Sn-0.7Cu>Sn-58Bi> Sn-9Zn,基材溶解行為隨反應時間與溫度的上升呈現線性增加的關係,並藉由銲料與鎳基材生成之介金屬相形態及晶粒間溝槽多寡解釋各種無鉛銲料對鎳基材溶解速率,並藉由計算相圖得出銲料中鎳之平衡濃度,利用Dybkov’s Equation比較溶解速率,得出240℃下溶解速率為Sn>Sn-3.0Ag-0.5Cu>Sn-58Bi>Sn-0.7Cu>Sn-9Zn、270℃以及300℃下溶解速率為Sn>Sn-3.0Ag-0.5Cu>Sn-0.7Cu>Sn-58Bi> Sn-9Zn,與240℃下實際實驗Sn>Sn-3.0Ag-0.5Cu>Sn-0.7Cu>Sn-58Bi> Sn-9Zn不符,考慮界面反應所生成之介金屬相,Sn-0.7Cu銲料較Sn-58Bi銲料界面多生成一(Cu,Ni)6Sn5相,且Sn-58Bi銲料僅生成薄層的Ni3Sn4相,因此實際不論溫度高低其溶解速率皆為Sn-0.7Cu>Sn-58Bi。研究Sn-9Zn銲料與鎳基材反應,於界面處生成較厚且緻密之Ni5(Zn,Sn)21相,因而能抑制鎳基材之溶解。
    介金屬相-Ni3Sn4相基材與不同銲錫反應的溶解速率快慢依序240℃下為Sn>Sn-3.0Ag-0.5Cu>Sn-0.7Cu>Sn-58Bi,300℃下則為Sn-0.7Cu>Sn>Sn-3.0Ag-0.5Cu> Sn-58Bi。Sn、Sn-58Bi銲料與Ni3Sn4相基材反應僅為Ni3Sn4相基材溶解進入銲料之中;Sn-3.0Ag-0.5Cu銲料與Ni3Sn4相基材反應,240℃下有(Cu,Ni)6Sn5層狀剝離發生,並於銲料中析出(Ni,Cu)3Sn4相,300℃下則僅基材溶解進入銲料之中;Sn-0.7Cu銲料與Ni3Sn4相基材反應,240℃下由基材原始界面向下生成一(Cu,Ni)6Sn5相,300℃下則可觀察到(Cu,Ni)6Sn5層狀剝離現象;Sn-9Zn銲料與Ni3Sn4相基材反應,反應於基材原始界面向下生成Ni5(Zn,Sn)21介金屬相並於其下再生成Ni3(Sn,Zn)4介金屬相。


    This research is about dissolution behavior and interfacial reaction in liquid Lead-free solders of Ni substrate and intermetallic compound Ni3Sn4 ¬substrate which formulate by ourselves.
    Dissolution rate of Ni substrate in liquid lead-free solder: Sn > Sn-3.0Ag-0.5Cu > Sn-0.7Cu > Sn-58Bi > Sn-9Zn. Dissolution behavior in Ni substrate increase with reaction times and temperature. This research explain dissolution rate by Dybkov’s equation, morphology of intermetallic compounds and grain boundary size. Use Sn-Ni-Cu calculation phase diagram to determine solubility equilibrium of Ni substrate in solders, then substitute it into Dybkov’s equation to compare dissolution rate. By PANDAT calculation and Dybkov’s equation, dissolution rate are Sn > Sn-3.0Ag-0.5Cu > Sn-58Bi > Sn-0.7Cu > Sn-9Zn at 240℃, Sn > Sn-3.0Ag-0.5Cu > Sn-0.7Cu > Sn-58Bi > Sn-9Zn at 270, 300℃. But in real experiment Sn-0.7Cu > Sn-58Bi at 240℃, explain it with the kind of intermetallic compound. Sn-58Bi solders only form Ni3Sn4, but Sn-0.7Cu solder form both (Ni,Cu)3Sn4 and (Cu,Ni)6Sn5 intermetallic compound. When Sn-9Zn solder reaction with Ni substrate it form thick and fine Ni5(Zn,Sn)21 which can restrain Ni substrate dissolution.
    Dissolution rate of intermetallic compound-Ni3Sn4 substrate in liquid lead-free solders: Sn > Sn-3.0Ag-0.5Cu > Sn-0.7Cu > Sn-58Bi at 240℃, Sn-0.7Cu > Sn > Sn-3.0Ag-0.5Cu > Sn-58Bi at 300℃. In Sn and Sn-58Bi solders only Ni3Sn4 substrate dissolute into solders. In Sn-3.0Ag-0.5Cu solders it form (Cu,Ni)6Sn5 spalling layer and separate (Ni,Cu)3Sn4 at 240℃. And at 300℃ only Ni3Sn4 substrate dissolute into Sn-3.0Ag-0.5Cu solder. In Sn-0.7Cu solders it form (Cu,Ni)6Sn5 layer at 240℃. And at 300℃ it form (Cu,Ni)6Sn5 spalling layer at interface. Sn-9Zn solders reaction with Ni3Sn4 substrate form Ni5(Zn,Sn)21 at interface, then Zn atom diffuse downward into Ni3Sn4 substrate to form Ni3(Sn,Zn)4.

    摘要……………………………………………………………………………...I 目錄……………………………………………………………………………...IV 圖目錄…………………………………………………………………………...VI 表目錄…………………………………………………………………………...VIII 第一章 前言…………………………………………………………………….1 第二章 文獻回顧……………………………………………………………….6 2-1 綠色環保與無鉛銲料…………………………………………………... 6 2-2 界面反應………………………………………………………………... 11 2-2-1 錫/鎳界面反應………………………………………………………. 12 2-2-2 錫-3.0 wt%銀-0.5 wt%銅/鎳界面反應……………………………… 13 2-2-3錫-0.7 wt%銅/鎳界面反應…………………………………………… 14 2-2-4 錫-58 wt%鉍/鎳界面反應………………………………................... 14 2-2-5 錫-9 wt%鋅/鎳界面反應……………………………………………. 15 2-3 溶解動力學……………………………………………………………... 16 2-3-1 鎳基材於液態銲錫中的溶解現象文獻回顧……………………….. 20 2-3-2 介金屬相於液態銲錫中的溶解現象文獻回顧…………………….. 24 第三章 實驗方法………………………………………………………………. 26 3-1 液態無鉛銲錫合金與純鎳、純介金屬相-Ni3Sn4相反應實驗………… 26 3-1-1 無鉛銲錫合金……………………………………………………….. 26 3-1-2 鎳棒狀基材備製…………………………………………………….. 26 3-1-3 無鉛銲錫合金與鎳棒基材液固反應實驗………………………….. 27 3-1-4 介金屬相-Ni3Sn4相備製與分析……………………………………. 27 3-1-5 介金屬相-Ni3Sn4相濺鍍鉬(Mo)膜…………………………………. 28 3-1-6 無鉛銲錫合金與介金屬相-Ni3Sn4相液固反應……………………. 29 3-2 實驗試樣分析…………………………………………………………... 30 3-2-1 金相處理…………………………………………………………….. 30 3-2-2 試樣分析…………………………………………………………….. 30 第四章 結果與討論……………………………………………………………. 35 4-1 鎳基材於不同銲錫中界面反應………………………………………... 35 4-1-1 鎳基材於純錫銲錫中界面反應與溶解現象……………………….. 35 4-1-2 鎳基材於錫-3.0 wt%銀-0.5 wt%銅銲錫中界面反應與溶解現象…. 39 4-1-3 鎳基材於錫-0.7 wt%銅銲錫中界面反應與溶解現象……………... 43 4-1-4 鎳基材於錫-58 wt%鉍銲錫中界面反應與溶解現象……………… 48 4-1-5 鎳基材於錫-9 wt%鋅銲錫中界面反應與溶解現象……………….. 51 4-1-6 鎳基材與不同銲錫反應溶解數據………………………………….. 55 4-1-7 鎳基材溶解機制討論……………………………………………….. 59 4-2 Ni3Sn4相基材於不同銲錫中溶解現象…………………………………. 72 4-2-1 Ni3Sn4相組成分析…………………………………………………… 72 4-2-2 Ni3Sn4相基材與純錫反應界面形態………………………………… 74 4-2-3 Ni3Sn4相基材與純錫反應溶解現象………………………………… 77 4-2-4 Ni3Sn4相基材與錫-3.0 wt%銀-0.5 wt%銅銲錫反應界面形態…….. 79 4-2-5 Ni3Sn4相基材與錫-3.0 wt%銀-0.5 wt%銅銲錫反應溶解現象…….. 81 4-2-6 Ni3Sn4相基材與錫-0.7 wt%銅銲錫反應界面形態............................. 86 4-2-7 Ni3Sn4相基材與錫-0.7 wt%銅銲錫反應溶解現象…………………. 87 4-2-8 Ni3Sn4相基材與錫-58鉍銲錫反應界面形態..................................... 94 4-2-9 Ni3Sn4相基材與錫-58鉍銲錫反應溶解現象..................................... 94 4-2-10 Ni3Sn4相基材與錫-9鋅銲錫反應界面形態..................................... 98 4-2-11 Ni3Sn4相基材與錫-9鋅銲錫反應溶解現象..................................... 99 4-2-12 Ni3Sn4基材與各銲錫合金溶解行為討論......................................... 100 第五章 結論……………………………………………………………………. 108 第六章 參考文獻………………………………………………………………. 110

    1.J. Glazer: Metallurgy of low temperature Pb-free solders for electronic assembly, International Materials Reviews, 40, pp.65-93 (1995)
    2.M. Abtew and G. Selvaduray: Lead-free solders in microelectronics, Materials Science and Engineering R: Reports, 27, pp.95-141 (2000)
    3.黃新鉗,IC構裝發展趨勢,表面黏著技術,第二十八卷,第1-10 頁 (1999)
    4.田民波、顏怡文,電子構裝材料 (2005)
    5.B. McClean: IC Packaging Trends, The McClean Report 2007 Edition, 10 ((2007)
    6.陳信文、陳立軒、林永森、陳志銘,電子構裝技術與材料 (1995)
    7.D. R. Frear: The mechanical behavior of interconnect materials for electronic packaging, JOM, 48, pp.49-53 (1996)
    8.B. Trumble: Get the lead out!, IEEE Spectrum, 35, pp.55-60 (1998)
    9.P. Zarrow: Lead-Free or die, Circuits Assembly, 16, pp.22-23 (2005)
    10.C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, and D. S. Jiang: Effects of limited Cu supply on soldering reactions between SnAgCu and Ni, Journal of Electronic Materials, 35, pp.1017-1024 (2006)
    11.W. H. Tao, C. Chen, C. E. Ho, W. T. Chen, and C. R. Kao: Selective interfacial reaction between Ni and eutectic BiSn lead-free solder, Chemistry of Materials, 13, pp.1051-1056 (2001)
    12.C. E. Ho, Y. W. Lin, S. C. Yang, and C. R. Kao: Volume effect on the soldering reaction between SnAgCu solders and Ni. in Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces. 2005. Irvine, CA.
    13.L. C. Shiau, C. E. Ho, and C. R. Kao: Reactions between Sn-Ag-Cu lead-free solders and the Au/Ni surface finish in advanced electronic packages, Soldering and Surface Mount Technology, 14 (2002)
    14.C. E. Ho, L. C. Shiau, and C. R. Kao: Inhibiting the formation of (Au1-xNix)Sn4 and reducing the consumption of Ni metallization in solder joints, Journal of Electronic Materials, 31, pp.1264-1269 (2002)
    15.C. Chen, C. E. Ho, A. H. Lin, G. L. Luo, and C. R. Kao: Long-term aging study on the solid-state reaction between 58Bi42Sn solder and Ni substrate, Journal of Electronic Materials, 29, pp.1200-1206 (2000)
    16.C. E. Ho, Y. M. Chen, and C. R. Kao: Reaction kinetics of solder-balls with pads in BGA packages during reflow soldering, Journal of Electronic Materials, 28, pp.1231-1237 (1999)
    17.M. S. Lee, C. M. Liu, and C. R. Kao: Interfacial reactions between ni substrate and the component bi in solders, Journal of Electronic Materials, 28, pp.57-62 (1999)
    18.C. E. Ho, Y. L. Lin, and C. R. Kao: Strong effect of Cu concentration on the reaction between lead-free microelectronic solders and Ni, Chemistry of Materials, 14, pp.949-951 (2002)
    19.W. T. Chen, C. E. Ho, and C. R. Kao: Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders, Journal of Materials Research, 17, pp.263-266 (2002)
    20.Y. W. Yen and W. K. Liou: Effect of Cu addition on interfacial reactions between Sn-9Zn lead-free solder and Ni substrate, Journal of Materials Research, 22, pp.2663-2667 (2007)
    21.C. Y. Lin, C. C. Jao, C. Lee, and Y. W. Yen: The effect of non-reactive alloying elements on the growth kinetics of the intermetallic compound between liquid Sn-based eutectic solders and Ni substrates, Journal of Alloys and Compounds, 440, pp.333-340 (2007)
    22.A. Sharif, Y. C. Chan, M. N. Islam, and M. J. Rizvi: Dissolution of electroless Ni metallization by lead-free solder alloys, Journal of Alloys and Compounds, 388, pp.75-82 (2005)
    23.M. N. Islam, Y. C. Chan, A. Sharif, and M. O. Alam: Comparative study of the dissolution kinetics of electrolytic Ni and electroless Ni-P by the molten Sn3.5Ag0.5Cu solder alloy, Microelectronics Reliability, 43, pp.2031-2037 (2003)
    24.Y. W. Yen, W. T. Chou, Y. Tseng, C. Lee, and C. L. Hsu: Investigation of dissolution behavior of metallic substrates and intermetallic compound in molten lead-free solders, Journal of Electronic Materials, 37, pp.73-83 (2008)
    25.E. M. Forum: High Recycling Index Guideline, High Recycling Index Guideline (2004)
    26.賴宏仁,環境相容生態材料-人類永續發展的最佳抉擇,工業材料雜誌,第二百五十一卷,第58-67頁 (2007)
    27.P. T. Vianco and D. R. Frear: Issues in the replacement of lead-bearing solders, JOM, 45, pp.14-19 (1993)
    28.C. D. A. N. York: The Copper Tube Handbook, pp.45 (1995)
    29.J. H. Vincent and G. Humpston: Lead-free solders for electronic assembly, GEC journal of research, 11, pp.76-89 (1994)
    30.侯淑榕,陳明坤,無鉛合金之球柵陣列封裝,表面黏著技術,第五十二卷,第11-28頁 (2005)
    31.白蓉生,無鉛銲接的到與因應,電路板會刊,第二十二卷,第4-27頁 (2003)
    32.W. J. Tomlinson and A. Fullylove: Strength of tin-based soldered joints, Journal of Materials Science, 27, pp.5777-5782 (1992)
    33.S. K. Kang and V. Ramachandran: Growth kinetics of intermetallic phase at the liquid Sn and solid Ni interface, Scripta metallurgica, 14, pp.421-424 (1980)
    34.W. J. Tomlinson and H. G. Rhodes: Kinetics of intermetallic compound growth between nickel, electroless, Ni-P, electroless Ni-B and tin at 453 to 493 K, Journal of Materials Science, 22, pp.1769-1772 (1987)
    35.S. W. Chen, C. M. Chen, and W. C. Liu: Electric current effects upon the Sn\Cu and Sn\Ni interfacial reactions, Journal of Electronic Materials, 27, pp.1193-1198 (1998)
    36.K. N. Tu and R. D. Thompson: Kinetics of interfacial reaction in bimetallic Cu-Sn thin films, Acta Metallurgica, 30, pp.947-952 (1982)
    37.Z. Marinkovic and V. Simic: Room temperature interactions in Ni/Metal thin film couples, Thin Solid Films, 98, pp.95-100 (1982)
    38.N. Dariavach, P. Callahan, J. Liang, and R. Fournelle: Intermetallic growth kinetics for Sn-Ag, Sn-Cu, and Sn-Ag-Cu lead-free solders on Cu, Ni, and Fe-42Ni substrates, Journal of Electronic Materials, 35, pp.1581-1592 (2006)
    39.J. W. Yoon, S. W. Kim, and S. B. Jung: IMC morphology, interfacial reaction and joint reliability of Pb-free Sn-Ag-Cu solder on electrolytic Ni BGA substrate, Journal of Alloys and Compounds, 392, pp.247-252 (2005)
    40.M. N. Islam and Y. C. Chan: Interfacial reactions of Sn-Cu solder with Ni/Au surface finish on Cu pad during reflow and aging in ball grid array packages, Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 117, pp.246-253 (2005)
    41.M. Y. Chiu, S. Y. Chang, Y. H. Tseng, Y. C. Chan, and T. H. Chuang: Characterization of intermetallic compounds formed during the interfacial reactions of liquid Sn and Sn-58Bi solders with Ni substrates, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 93, pp.248-252 (2002)
    42.J. W. Yoon, C. B. Lee, and S. B. Jung: Interfacial reactions between Sn-58 mass% Bi eutectic solder and (Cu, electroless Ni-P/Cu) substrate, Materials Transactions, 43, pp.1821-1826 (2002)
    43.K. S. Kim, J. M. Yang, C. H. Yu, I. O. Jung, and H. H. Kim: Analysis on interfacial reactions between Sn-Zn solders and the Au/Ni electrolytic-plated Cu pad, Journal of Alloys and Compounds, 379, pp.314-318 (2004)
    44.Y. C. Chan, M. Y. Chiu, and T. H. Chuang: Intermetallic compounds formed during the soldering reactions of eutectic Sn-9Zn with Cu and Ni substrates, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 93, pp.95-98 (2002)
    45.V. N. Yeremenko, Ya. V. Natanzon, and V. I. Dybkov: The effect of dissolution on the growth of the Fe2Al5 interlayer in the solid iron-liquid aluminium system. Journal of Materials Science, 16, pp.1748-1756 (1981)
    46.M. Samjid and P. C. Michael: Dissolution of solids in contact with liquid solder, Soldering & Surface Mount Technology, 16, pp.31 (2004)
    47.M. N. Islam, Y. C. Chan, M. O. Alam, and A. Sharif: Comparative study of the dissolution kinetics of electrolytic Ni and electroless NiP layers by molten Sn3.5Ag solder alloy, Journal of Electronic Packaging, Transactions of the ASME, 127, pp.365-369 (2005)
    48.M. N. Islam and Y. C. Chan: Interfacial reactions of Cu-containing lead-free solders with Au/NiP metallization, Journal of Electronic Materials, 34, pp.662-669 (2005)
    49.M. N. Islam, Y. C. Chan, and A. Sharif: Interfacial reactions of Sn-Cu and Sn-Pb-Ag solder with Au/Ni during extended time reflow in ball grid array packages, Journal of Materials Research, 19, pp.2897-2904 (2004)
    50.M. N. Islam, Y. C. Chan, A. Sharif, and M. J. Rizvi: Effect of 9 wt.% in addition to Sn3.5Ag0.5Cu solder on the interfacial reaction with the Au/NiP metallization on Cu pads, Journal of Alloys and Compounds, 396, pp.217-223 (2005)
    51.A. Sharif and Y. C. Chan: Effect of substrate metallization on interfacial reactions and reliability of Sn-Zn-Bi solder joints, Microelectronic Engineering, 84, pp.328-335 (2007)
    52.V. I. Dybkov: Growth Kinetics of Chemical Compound Layers, Cambridge International Science Publishing, Cambridge (1998)
    53.D. Q. Yu, C. M. L. Wu, C. M. T. Law, L. Wang, and J. K. L. Lai: Intermetallic compounds growth between Sn-3.5Ag lead-free solder and Cu substrate by dipping method, Journal of Alloys and Compounds, 392, pp.192-199 (2005)
    54.D. Ma, W. D. Wang, and S. K. Lahiri: Scallop formation and dissolution of Cu-Sn intermetallic compound during solder reflow, Journal of Applied Physics, 91, pp.3312 (2002)
    55.T. Takahashi, M. Tadauchi, and S. Komatsu: Experimental investigation of Sn/Ni/Cu interactions at high temperatures, Journal of Materials Science, 41, pp.281-283 (2006)
    56.K. Banerji and R. F. Darveaux: Effect of aging on the strength and ductility of controlled collapse solder joints. in First International Conference on Microstructures and Mechanical Properties of Aging Materials. 1993. Chicago, IL, USA: Publ by Minerals, Metals & Materials Soc (TMS).
    57.H. Baker: ASM Handbook: Alloy Phase Diagrams, 3 (1992)
    58.JCPDS Powder Diffraction File, (1998)
    59.S. C. Hsu, S. J. Wang, and C. Y. Liu: Effect of Cu content on interfacial reactions between Sn(Cu) alloys and Ni/Ti thin-film metallization, Journal of Electronic Materials, 32, pp.1214-1221 (2003)
    60.C. H. Lin, S. W. Chen, and C. H. Wang: Phase equilibria and solidification properties of Sn-Cu-Ni alloys, Journal of Electronic Materials, 31, pp.907-915 (2002)
    61.邱正男,陳信文,Personal Communication
    62.H. F. Hsu and S. W. Chen: Phase equilibria of the Sn-Ag-Ni ternary system and interfacial reactions at the Sn-Ag/Ni joints, Acta Materialia, 52, pp.2541-2547 (2004)
    63.S. K. Kang, R. S. Rai, and S. Purushothaman: Interfacial reactions during soldering with lead-tin eutectic and lead (Pb)-free, tin-rich solders, Journal of Electronic Materials, 25, pp.1113-1120 (1996)
    64.K. N. Tu and R. Rosenberg: Room temperature interaction in bimetallic thin film couples, Japanese Journal of Applied Physics Suppl., 2, pp.633-636 (1974)
    65.周沁怡,熱氣泡式噴墨列印系統之界面穩定性,國立清華大學材料科學與工程研究所博士論文 (2006)

    QR CODE