簡易檢索 / 詳目顯示

研究生: 趙國興
Kuo-Sing Chao
論文名稱: Sn-9Zn無鉛銲料與Au/Ni/SUS304基材界面反應的研究
The Study of Interfacial Reactions betweenSn-9Zn Lead-Free Solder and Au/Ni/SUS304 Substrate
指導教授: 顏怡文
Yee-wen Yen
口試委員: 鄭偉鈞
Wei-chun Cheng
郭俞麟
Yu-Lin Kuo
吳子嘉
Albert T. Wu
陳志銘
Chih-Ming Chen
洪伯達
Po-Da Hong
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 85
中文關鍵詞: 無鉛銲料Sn-9Zn界面反應
外文關鍵詞: Lead-free solder, Sn-9Zn, interfacial reaction
相關次數: 點閱:363下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無鉛銲料是電子構裝產業中最熱門的議題,以Sn-9Zn為主的無鉛銲料因價格低廉,已成為工業界研究的焦點。另一方面,Sn-9Zn無鉛銲料與Au/Ni/SUS304基材的界面反應鮮少被研究討論。
    本研究在探討Sn-9Zn無鉛銲料與Au/Ni/SUS304基材進行液-固界面反應,反應溫度為240、255與270℃,反應時間為1、2、3、4 與5小時,觀察界面反應生成的介金屬相種類與形態。
    Sn-9Zn與Au/Ni/SUS304液-固界面反應的結果顯示,於界面處皆只生成一平坦狀介金屬相,以EPMA分析可知其介金屬為Ni5Zn21相,無發現其他介金屬相存在。觀察其厚度成長情形,發現隨反應溫度升高及反應時間增長其介金屬相成長增厚,其厚度與反應時間的平方根呈線性關係(n=0.5),符合動力學上的拋物線定律。Ni5Zn21相生長速率常數k值,隨著反應溫度的上升而變大,其反應活化能為112.5kJ/mole。


    Lead-free solder as Sn-9Zn so cheap has attracted extensive studies recently. On the other hand, the interfacial reaction between the Sn-9Zn based solders and Au/Ni/SUS304 substrate were rarely studied before.
    This study investigated the interfacial reaction between Sn-9Zn lead-free solder and Au/Ni/SUS304 substrate. The liquid-solid reaction temperature at 240、255 and 270℃, reacted 1、2、3、4 and 5 hour.
    After reaction, we analyzed the species of IMCs and observed morphology of IMCs. The thickness of the reaction layers increased with higher temperature and longer reaction time. The growth of IMC formed at interface between Sn-9Zn lead-free solder and Au/Ni/SUS304 substrate was diffusion controlled(n=0.5), and their growth rates were described by using the parabolic law. EPMA results revealed, only a continuous Ni5Zn21 was found between Sn-9Zn lead-free solder and Au/Ni/SUS304 substrate. The IMCs content of others were not observed at all. The k values of Ni5Zn21 growth rate constant increased with higher temperature, and the activation energy of growth was 112.5 kJ/mol.

    中文摘要I 英文摘要II 誌謝III 目錄IV 圖目錄VII 表目錄X 第一章 前言 1 第二章 文獻回顧4 2.1 電子構裝技術4 2.2 無鉛銲料10 2.3 Sn-9Zn無鉛銲料及Au/Ni/SUS304基材相關的二、三元系 統相圖16 2.3-1 Sn-Ni 二元系統相圖16 2.3-2 Sn-Zn 二元系統相圖17 2.3-3 Ni-Zn 二元系統相圖18 2.3-4 Fe-Zn 二元系統相圖19 2.3-5 Fe-Sn 二元系統相圖20 2.3-6 Fe-Ni 二元系統相圖21 2.3-7 Au-Zn 二元系統相圖22 2.3-8 Au-Sn 二元系統相圖23 2.3-9 Au-Ni 二元系統相圖25 2.3-10 Au-Fe 二元系統相圖26 2.3-11 Sn-Zn-Ni 三元系統相圖27 2.4 液-固界面反應28 2.5 擴散控制反應與界面控制反應31 2.6 界面反應相關文獻回顧33 2.6-1 Sn/Ni界面反應33 2.6-2 Sn-9Zn/Ni界面反應36 第三章 實驗方法37 3.1 Sn-9Zn無鉛銲料與相關實驗材料37 3.2 反應偶製作38 3.3 反應偶處理40 3.4 反應偶試片量測與分析40 第四章 結果與討論44 4.1 Sn-9Zn/Au/Ni/SUS304反應偶的介金屬相種類與形態44 4.2 Sn-9Zn/Au/Ni/SUS304反應偶的介金屬相厚度變化趨勢53 4.3 Sn-9Zn/Au/Ni/SUS304反應偶的蝕刻形態56 4.4 Sn-9Zn/Au/Ni/SUS304反應偶的界面反應動力學58 第五章 結論63 第六章 參考文獻64

    1. A. Zribi, A. Clark, L. Zavalij, P. Borgeseu, and E. J. Cotts, Journal of Electronic Materials, vol. 30, pp. 1157-1163 (2001).
    2. D. R. Frear, J. W. Jang, J. K. Lin, C. Zhang, P. T. Vianco, and D. R. Frear, “Pb-free solders for flip-chip interconnects”, Journal of Materials, vol. 53, pp. 28-38 (2001).
    3. B. Trumble, J. Brydges, “Technical progress on printed wired assembly using Nortel's no-lead solder assembly process”, IEEE International Symposium on Electronics & the Environment, pp. 112-116 (1998).
    4. D. R. Frear and P. T. Vianco, “Intermetallic growth and mechanical behavior of low and high melting temperature solder alloys”, Metallurgical Transactions A, vol. 25A, pp. 1509 (1994).
    5. D. R. Frear, J. W. Jang, J. K. Lin, and C. Zhan, “Solders for flip-chip interconnects”, Journal of Materials, vol. 53, pp. 28-38 (2001).
    6. L. Hymes, Electronic Materials Handbook, vol. 1 Packaging, ASM International, Materials Park, Ohio (1989).
    7. C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, and D. S. Jiang, Journal of Electronic Materials, vol. 35, pp. 1017-1024 (2006).
    8. W. H. Tao, C. Chen, C. E. Ho, W. T. Chen, and C. R. Kao, Chemistry of Materials, vol. 30, pp. 1151-1156 (2001).
    9. 劉家昇,“無鉛銲料與鎳-鉬基材界面反應的研究”,碩士論文 (2007)。
    10. C. M. Liu, C. E. Ho, W. T. Chen, and C. R. Kao, Journal of Electronic Materials, vol. 30, pp. 1152-1156 (2001).
    11. C. E. Ho, L. C. Shiau, and C. R. Kao, Journal of Electronic Materials, vol. 31, pp. 1264-1269 (2002).
    12. S. W. Chen and Y. W. Yen, Journal of Electronic Materials, vol. 30, pp. 1133-1137 (2002).
    13. C. E. Ho, Y. W. Chen, and C. R. Kao, Journal of Electronic Materials, vol. 28, pp. 1231-1238 (1999).
    14. Yen, Yee-Wen, Liou, Wei-Kai, “Interfacial reactions between Sn-9Zn lead-free solder and Ni substrate”, Journal of Materials Research, vol. 22, pp. 2662-2667 (2007).
    15 劉昆達,“無鉛銲料與Au/Ni/SUS304基材間界面反應之研究”,台灣化工學會第54次年會 (2007)。
    16. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology : Fundamentals, Practice and Modeling, Prentice Hall, Inc., New Jersey, Chap. 2 (2001).
    17. M. R. Pinnel and W. H. Knausenberger, “Interconnection system requirements and modeling”, AT&T Technical Journal, vol. 66, pp. 45-56 (1987).
    18. R. R. Tummala, E. J. Rymaszewaki and A. G. Klopfenstein, “Microelectronics Packaging Handbook”, Chapman & Hall, New York (1997).
    19. 田民波著、顏怡文修訂,“半導體電子元件構裝技術”,五南圖書出版社,台北 (2005)。
    20. He, Wenzhi, Li, Guonqming, Ma, Xingfa, Wang, Hua, Huang, Juwen, Xu, Min, Huang, Chungie, “WEEE recovery strategies and the WEEE treatment status in China”, Journal of Hazardous Materials, vol. 136, PP. 502-512 (2006).
    21. B. Trumble, “Get the Lead Out!”, IEEE Spectrum, vol. 35, pp. 55-60 (1998).
    22. D. R. Frear, J. W. Jang, J. K. Lin, and C. Zhang, “Pb-free solders for flip-chip interconnects”, Journal of Materials, vol. 53, pp. 28-32 (2001).
    23. S. K. Kang and A. K. Sarkhel, “Lead (Pb)-free solders for electronic packaging”, Journal of Electronic Materials, vol. 23, pp. 701-701 (1994).
    24. W. J. Plumbridge, “Solders in electronics”, Journal of Materials Science, vol. 31, pp. 2501-2514 (1996).
    25. F. W. Gayle, G. Becka, J. Badgett, G. Whitten, T. Y. Pan, A. Grused, B. Bauer, R. Lathrop, J. Slattery, I. Anderson, J. Foley, A. Gickler, D. Napp, J. Mather, and C. Olson, “High temperature lead-free solder for microelectronics”, Journal of Materials, vol. 53, pp. 17-21 (2001).
    26. B. K. Prasad, “Microstructure and tensile property characterization of a nickel-containing zinc-based alloy: effects of heat treatment and test conditions”, Materials Science and Engineering, vol. 277, pp. 95-101 (2000).
    27. United States Environmental Protection Agency, “Emergency laning and Community Right-to-Know Act-Section 313: Guidance for Reporting Releases and Other Waste Management Quantities of Toxic Chemicals: Lead and Lead Compounds”, USEPA 260-B-01-027 (2001).
    28. J. Glazer, “Metallurgy of low temperature Pb-free solders for electronic assembly”, International Materials Reviews, vol. 40, pp. 65-93 (1995).
    29. T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott, vol. 1, pp. 71 (1986).
    30. C. Lea. A, Scientific Guide to Surface Mount Technology, Electrochemical Publication Ltd., GB-Port Erin, British Isles, pp. 378-379 (1989).
    31. K. S. Kim, S. H. Huh and K. Suganuma, “Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn-Ag-Cu Alloy and Joints with Cu”, Microelectronic Reliability, vol. 43, pp. 259-267 (2003).
    32. C. W. Huang and K. L. Lin, “Interfacial reactions of lead-free Sn-Zn based solders on Cu and Cu plated electroless Ni-P/Au layer under aging at 150℃”, Journal of Materials Research, vol. 19, pp. 3560-3568 (2004).
    33. K. S. Kim, J. M. Yang, C.H. Yu, I. O. Jung and H. H. Kim, “Analysis on Interfacial Reactions Between Sn-Zn Solders and the Au/Ni Electrolytic-plated Cu Pad”, Journal of Alloys and Compounds, vol. 379, pp. 314-318 (2004).
    34. M. McCormack and S. Jin, “Progress in the Design of New Lead-Free Solder Alloys”, JOM, vol. 45, pp. 36-40 (1993).
    35. M. Abtew and G. Selvaduray,“Lead-free Solders in microelectronics”, Materials Science and Engineering, vol. 27, pp. 95-141 (2000).
    36. R. Strauss, SMT Soldering Handbook, Newnes, Oxford, pp. 11-13 (1998).
    37. De Kluizenaar, and E. E., “Surface oxidation of molten soft solder: an auger study”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 1, pp. 1480-1485 (1983).
    38. M. McCormack, and S. Jin, “Progress in the design of new lead-free solders”, Journal of Materials, vol. 45, pp. 36-40 (1993).
    39. K. Suganuma and K. Niihara, “Wetting and interface microstructure between Sn-Zn binary alloys on Cu”, Journal of Materials Research, vol. 13, pp. 2859-2865 (1998).
    40. J. M. Song, P. C. Liu, C. L. Shih and K. L. Lin “Role of Ag in the formation of intermetallic phases in the Sn-Zn soldering”, Journal of Electron. Materials, vol. 34, pp. 1249-1254 (2005).
    41. P. Nash and A. Nash, in “Binary Alloy Phase Diagrams”, ed. By T. B. Massalski, ASM international, Materials Park, vol. 3, pp. 2863-2864 (1990).
    42. Z. Moser, J. Dutkiewicz, W. Gasior, and J. Salawa, in “Binary Alloy Phase Diagrams”, ed. By T. B. Massalski, ASM international, Materials Park, vol. 3, pp. 3416 (1990).
    43. De Kluizenaar, and E. E., “Surface oxidation of molten soft solder: an auger study”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 1, pp. 1480-1485 (1983).
    44. M. McCormack, and S. Jin, “Progress in the design of new lead-free solders”, Journal of Materials, vol. 45, pp. 36-40 (1993).
    45. S. Vaynman and M. E. Fine, “Development of flux for lead-free solders contain zinc”, Scripta Materialia, vol. 41, pp. 1269–1271 (1999).
    46. P. Nash and A. Nash, in “Binary Alloy Phase Diagrams”, ed. By T. B. Massalski, ASM international, Materials Park, vol. 3, pp. 2887-2889 (1990).
    47. B. P. Burton and P. Perrot, in “Binary Alloy Phase Diagrams”, ed. By T. B. Massalski, ASM international, Materials Park, vol. 2, pp. 1797 (1990).
    48. H. Okamoto, in “Binary Alloy Phase Diagrams”, ed. By T. B. Massalski, ASM international, Materials Park, vol. 3, pp. 1774-1776 (1990).
    49. L. J. Swartzendruber, V. P. Itkin, and C. B. Alcock, in “Binary Alloy Phase Diagrams”, ed. By T. B. Massalski, ASM international, Materials Park, vol. 3, pp. 1735-1738 (1990).
    50. H. Okamoto and T. B. Massalski, in “Binary Alloy Phase Diagrams”, ed. By T. B. Massalski, ASM international, Materials Park, vol. 1, pp. 456-458 (1990).
    51. H. Okamoto and T. B. Massalski, in “Binary Alloy Phase Diagrams”, ed. By T. B. Massalski, ASM international, Materials Park, vol. 5, pp. 433-434 (1984).
    52. D. S. Evans and A. Prince, in “Phase diagrams of ternary gold alloys” ed. by A. Prince, G. V. Raynor and D. S. Evans, Institute of Metal, London (1990).
    53. B. Legendre, C. Hancheng, F. Hayes, C.A. Maxwell, D. S. Evans and A. Prince, Materials Science and Technology, vol. 3, pp. 875- 876 (1987).
    54. P. Y. Chevalier, Thermochimica Acta, vol. 130, pp. 1-13 (1988).
    55. T. B. Massalski and H. Pops, Acta Metallurgical vol. 18, pp. 961-968 (1971).
    56. H. Okamoto and T. B. Massalski, in “Binary Alloy Phase Diagrams”, ed. By T. B. Massalski, ASM international, Materials Park, vol. 1, pp. 402-404 (1990).
    57. H. Okamoto and T. B. Massalski, L. J. Swartzendruber, and P. A. Beck, in “Binary Alloy Phase Diagrams”, ed. By T. B. Massalski, ASM international, Materials Park, vol. 5, pp. 367-369 (1984).
    58. 周沁怡,“熱氣泡式噴墨列印系統之界面穩定性” , 國立清華大學博士論文, (2005).
    59. 顏怡文, “銀-錫/銅與銀-錫/金系統之相平衡與界面反應的研究”,
    國立清華大學化學工程學系博士論文 (2002).
    60. WinPhaD, a software for Binary Phase diagram Calculation, CompuTherm LLC, 437 S. Yellowstone Drive, Suite 217, Wisconsin-Madison, WI 43719, USA (2000).
    61. W.G. Bader, Welding Journal, vol. 34, pp. 551-557 (1969).
    62. P. J. Kay and C. A. Mackay, Transactions of the Institute of Metal Finishing, vol. 54, pp. 68-74 (1976).
    63. S. K. Kang and V. Ramachandran, Scripta Metallurgica, vol. 14, pp. 421-424 (1980).
    64. Z. Marinkovic and V. Simic, Thin Solid Films, vol. 98, pp. 95-100 (1982).
    65. W. J. Tomlinson and H. G. Rhodes, Journal of Materials Science, vol. 22, pp. 1769-1772 (1987).
    66. J. A. van Beek, S. A. Stolk, and F. J. J. van Loo, Zeitschrift fur Metallkunde, vol. 73, pp. 439-444 (1982).
    67. S. Bader, W. Gust, and H. Hieber, Acta Metallurgica et Materialia, vol. 43, pp. 329-337 (1995).
    68. S. W. Chen, C. M. Chen and W. C. Liu, “The electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions”, Journal of Electronic Materials, vol. 27, pp. 1193-1198 (1998).
    69. T. Y. Lee, K. N. Tu, and D. R. Frear, “Electromigration of eutectic Sn-Pb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization”, Journal of Applied Physics, vol. 90, pp. 4502-4508 (2001).
    70. J. Haimovich, “Intermetallic compound growth in tin and tin-lead platings over nickel and its effects on solderability”, Welding Research Supplement, vol. 68, pp. 102-111 (1989).
    71. W. J. Tomlinson and H. G. Rhodes, “Kinetics of intermetallic compound growth between nickel, electroless Ni-P, electroless Ni-B and tin at 453 to 493 K”, Journal of Materials Science, vol. 22, pp. 769-1772 (1987).
    72. S. K. Kang and V. Ramachandran, Scripta Metall., vol. 14, p. 421~424 (1980).
    73. R. A. Islam, B. Y. Wu, M. O. Alam, Y. C. Chan and W. Jillek,“Investigations on microhardness of Sn-Zn based lead-free solder alloys as replacement of Sn-Pb solder”, Journal of Alloys and Compounds, vol. 392, pp. 149-158 (2005).
    74. T. Shimozaki and M. Onishi, “Frame of reference and intrinsic diffusion coefficients for binary interdiffusion”, Journal of the Japan Institute of Metals, vol. 45, pp. 1221-1222 (1981).

    QR CODE