簡易檢索 / 詳目顯示

研究生: 徐君蕾
Chun-Lei Hsu
論文名稱: 電鍍霧錫系統中電流密度對錫鬚晶成長機制之探討
Growth Mechanism of Tin Whiskers by Changing Current Density in the Matte Tin System
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 陳志銘
Chih-Ming Chen
吳子嘉
Albert Wu
蔡顯榮
Hsien-Jung Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 82
中文關鍵詞: 霧錫電流密度錫鬚晶濕潤性表面張力接觸角
外文關鍵詞: Matte tin, Tin whisker. Wettability
相關次數: 點閱:283下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究論文中,主要探討在不同的操作環境條件下,錫鬚晶生長的情形,且對於不同條件的鍍層討論潤濕性的差異,以期望能找到抑制或延緩鬚晶生長的最佳加工條件,減輕鬚晶問題所造成的破壞及損失。
    以電鍍的方式在銅基材上鍍純錫,改變電鍍時的電流密度觀察鍍層的表面結構。將各式片放置於不同溫度下做熱處理,並且改變時效時間,探討不同環境下對鬚晶成長機制的影響,以及濕潤性的差異。結果電流密度越高,鍍層的厚度會越厚;且電流密度越高所鍍得錫層其表面的錫晶粒尺寸會越小。長時間的熱處理,錫-銅界面發生產生IMC相會沿著晶界移動,較小尺寸的晶粒會形成較大的壓縮應力。因此在電流密度較大時鬚晶容易生長。較高溫熱處理,表面錫鍍層因為溫度升高傾向均質化,均質化的過程可以消除鍍層與基材間的殘留應力。但是時間增加,IMC會在基材中形成另一個無法完全抵銷的應力來源,在高溫下只能夠延遲鬚晶的生成。
    使用濕潤天平量測基材與熔融銲錫間的濕潤性。由濕潤時間判斷濕潤性質的好壞,本實驗結果顯示,隨著電鍍時所使用的電流密度增加,銲錫與基材間受力達到平衡所需的濕潤時間越長,表示沾錫性差。若要提高基材的濕潤性在使用純錫當做表面電鍍的銲料時,使用電流密度0-15 ASD可以提高濕潤性,使元件與基板間達到較佳的接合效果。經由濕潤天平的數據,可以計算出不同電流密度條件下的表面張力,本實驗所計算到的表面張力介於0.4- 0.6 N/m。
    目前一般所使用的電子元件在運轉中會釋放熱能,其環境溫度大約在60~80℃,使用低電流密度在銅引腳鍍上錫的電子元件,在這個環境下長時間的運作可以暫時緩和鬚晶的問題,延長元件的使用壽命。


    Tin whisker growth mechanism and wettability with different electroplating conditions were studied in this work. It was expected that the optimal processing parameters to prevent the whisker growth could be found. Matte Sn was electroplated on the copper at various current densities, and then surface morphology was observed. The different heat treatment conditions were applied to each specimen.
    The Sn layer with thicker thickness and smaller crystal grain size was observed under passing the higher current density. The formation of intermetallic compounds at the Sn-Cu interface induced the compressive stress to accelerate the growth of the Sn whisker. Meanwhile, the whisker was easily found with the longer aging time. At the high heat-treated temperature, the surface grain tends to be isotropic to eliminate the residual stress between the base interfaces to prevent the growth of the Sn whisker.
    The wettability between the molten Sn-3.0Ag-0.5Cu solder and Cu substrate was measured by the wetting balance. The Cu deposited the Sn can improve the wettability. The range of the surface tension between the Cu and solder is between 0.4- 0.6 N/m and the contact angle is at 20-70°.
    Using the lower current density to electroplate the tin on the Cu and applied the long time heat treatment might temporarily relax the compressive stress among Sn layer to prevent the Sn whisker growth. Thus, the reliability of devices can be obtained.

    第一章 前言 1 第二章 文獻回顧 4 2.1鬚晶簡介 4 2.1-1形態外觀 4 2.1-2鬚晶的成長機制 6 2.2潤濕天平量測濕潤性質的相關理論 13 2.2-1 Wilhemy Plate技術 15 2.2-2濕潤天平量測濕潤性的應用 21 第三章 研究方法 23 3.1電鍍錫 23 3.2觀察與分析 27 3.3潤濕性質的量測 27 第四章 結果與討論 31 4.1比較不同條件下的鍍層表面結構 31 4.1-1電鍍條件與鍍層厚度的關係 31 4.1-2鍍層條件對表面結晶結構的影響 32 4.2比較不同條件鍍層的鬚晶生長狀況 36 4.2-1改變電流密度 36 4.2-2改變熱處理溫度 46 4.3不同鍍層條件對濕潤性的影響 52 第五章 結論 61 第六章 參考文獻 63

    [1] P. Zarrow, Circuit Assembly, p.18-20 (1999)
    [2] J. C. Berg:Wettability, Marcel Dekker. Inc., New York, chapter 2, (1993)
    [3] C. Xu, Y. Zhang, C. Fan, and J. A. Abys:Understanding whisker phenomenon : The driving force for whisker formation, http://thor.inemi.org/webdownload/newsroom/Presentations/TinwhiskerchenxuIPC2002.pdf
    [4] Y. Zhang, C. Fan, O. Khaselev, and J. A. Abys:Tin whisker growth - substrate effect understanding CTE mismatch and IMC formation, Circuitree, pp. 70-82, (2004)
    [5] HP EL-MF-864-00: Testing and plating process control requirement 120 for Tin-based plating on lead-free component, (2005)
    [6] W. J. Choi, T. Y. Lee, K. N. Tu, N. Tamura, R. S. Celestre, A. A. MacDowell, T. T. Sheng, Y. Y. Bong, and L. Nguyen, 52nd Electro. Comp. and Tech., May 28-31, San Diego, pp.628-633, CA (2002)
    [7] http://nepp.nasa.gov/whisker/
    [8] http://www.kson.com.tw/chinese/study_11_1.htm
    [9] G. Galyon:A History of Tin Whisker Theory: 1946 to 2004, SMTAI International conference, IL, pp.26-30, (2004)

    [10] G. Sheng, C. Hu, et al.:Tin Whiskers Studied by Focused Ion Beam Imaging and Transmission Electron Microscopy, Journal of Applied Physics , 92, pp. 64-69 (2002)
    [11] W. C. Ellis, D. F. Gibbons and R. C. Treuting:Growth of Metal Whiskers from the Solid, Growth and Perfection of Crystals, ed. R.H. Doremus, B.W. Roberts, and D. Turnbull, New York: John Wiley & Sons, pp. 102-120 (1958)
    [12] U. Lindborg:Observations on the Growth of Whisker Crystals from Zinc Electroplate, Metallurgical Transactions A - Physical Metallurgy and Materials Science, 6, pp. 1581-1586 (1975)
    [13] C. Herring and J. K. Galt:Elastic and Plastic Properties of Very Small Metal Specimens, Phys. Rev., 85, pp.1060-1062 (1952)
    [14] G. W. Sears:Acta Metall, 3, pp.367 (1955)
    [15] A. P. Levitt:Whisker Technology, Wiley-Interscience (1970)
    [16] K. N. Tu:Interdiffusion and reaction in bimetallic Cu-Sn thin films, Acta Metallurgica, 21, pp. 347-354 (1973)
    [17] K. N. Tu and R. D. Thompson:Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films, Acta metall., 30, pp.947-952 (1982)
    [18] B. Z. Lee and D. N. Lee:Spontaneous growth mechanism of tin whiskers, Acta materialia, 46, pp.3701-3714 (1998).
    [19] K. N. Tu:Cu/Sn interfacial reactions: Thin-film case versus bulk case, Materials Chemistry and Physics, 46, pp. 217-223 (1996)

    [20] Luu Nguyen, W. J. Choi, T. Y. Lee, K. N. Tu, N. Tamura, R. S. Celestre, A. A. MacDowell and Y. Y. Bong,:Tin whiskers studied by synchrotron radiation scanning X-ray micro-diffraction, Acta Materialia, 51, pp. 6253-6261 (2003)
    [21] K. N. Tu and J. C. M. Li:Spontaneous whisker growth on lead-free solder finishes, Materials Science and Engineering A, 409, pp. 131-139 (2005)
    [22] C. Xu, Y. Zhang, C. L. Fan, and J. A. Abys:Driving Force for the Formation of Sn Whiskers: Compressive Stress—Pathways for Its Generation and Remedies for Its Elimination and Minimization, IEEE Transactions on Electronics Packaging Manufacturing, 28, pp.31-35 (2005)
    [23] R. J. Klein Wassink:Solder in Electronics, 2nd ed., Electrochemical Publications, Isle of Man, British Isles, England, pp.300-370 (1989)
    [24] John.C. Berg: Wettability , Marcel Dekker. Inc., New York, chapter 1, (1993)
    [25] F. G. Yost:The Metal Science of Joining, pp.4959 (1992)
    [26] J. Y. Park, C. S. Kang and J. P. Jung:The Analysis of The Withdrawal Force Curve of the Wetting Curve Using 63Sn-37Pb and 96.5 Sn-3.5 Ag Eutectic Solders, Journal of Electronic Materials, 28, pp. 1256-1262 (1999)
    [27] J. I. Lee, S. W. Chen, H. Y. Chang and C. M. Chen:Reactive Wetting between Molten Sn-Bi and Ni Substrate, Journal of Electronic Materials, 32, pp.117-122 (2003)
    [28] 白蓉生:無鉛銲接的到來與因應, 電路板會刊, 第22期, pp.5-27 (2003)
    [29] 梁明況:錫鬚驗證技術及微結構分析技術, 表面接著技術,第56期, pp.1-16 (2005)

    QR CODE